Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T21:33:10.805Z Has data issue: false hasContentIssue false

Un principe d'invariance pour une classe de marches p-corrélées sur ℤd

Published online by Cambridge University Press:  14 July 2016

Alexis Bienvenüe*
Affiliation:
Université Lyon I
*
Postal address: Laboratoire de Probabilités, Université Claude Bernard Lyon I, Bât. 101, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex, France. Email address: [email protected]

Abstract

Let ζ be a Markov chain on a finite state space D, f a function from D to ℝd, and Sn = ∑k=1nfk). We prove an invariance theorem for S and derive an explicit expression of the limit covariance matrix. We give its exact value for p-reinforced random walks on ℤ2 with p = 1, 2, 3.

Type
Research Papers
Copyright
Copyright © Applied Probability Trust 1998 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bender, E.A., and Richmond, L.B. (1984). Correlated random walks. Ann. Prob. 12, 274278.CrossRefGoogle Scholar
Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York.Google Scholar
Chen, A., and Renshaw, E. (1992). The Gillis–Domb–Fisher correlated random walk. J. Appl. Prob. 29, 792813.CrossRefGoogle Scholar
Chen, A., and Renshaw, E. (1994). The general correlated random walk. J. Appl. Prob. 31, 869884.CrossRefGoogle Scholar
Domb, C., and Fisher, M. (1958). On random walks with restricted reversals. Proc. Camb. Phil. Soc. 54, 4859.CrossRefGoogle Scholar
Doukhan, P. (1994). Mixing: Properties and Examples. Lecture Notes in Statistics 85. Springer-Verlag, New York.Google Scholar
Gillis, J. (1955). Correlated random walk. Proc. Camb. Phil. Soc. 51, 639651.CrossRefGoogle Scholar
Grigorescu, S. and Oprişan, G. (1976). Limit theorems for JX processes with a general state space. Z. Wahrscheinlichkeitsth. 35, 6573.CrossRefGoogle Scholar
Iossif, G. (1986). Return probabilities for correlated random walks. J. Appl. Prob. 23, 201207.CrossRefGoogle Scholar
Jain, G. (1973). On the expected number of visits of a particle before absorption in a correlated random walk. Canad. Math. Bull. 16, 389395.CrossRefGoogle Scholar
Renshaw, E., and Henderson, R. (1981). The correlated random walk. J. Appl. Prob. 18, 403414.CrossRefGoogle Scholar
Seth, A. (1963). The correlated unrestricted random walk. J. R. Statist. Soc. B 25, 394400.Google Scholar
Spitzer, F. (1976) Principles of Random Walks, 2nd edn. Springer-Verlag, New York.CrossRefGoogle Scholar