No CrossRef data available.
Article contents
The total number of heterozygotes before fixation
Published online by Cambridge University Press: 14 July 2016
Abstract
This paper is about the total number of individuals who are heterozygotic for a specified allele, before it is either lost or fixed. The exact distribution is found for small populations, and two limiting processes are investigated.
- Type
- Research Papers
- Information
- Copyright
- Copyright © Applied Probability Trust 1976
References
[1]
Borel, E. (1942) Sur l'emploi du théorème de Bernoulli pour faciliter le calcul d'une infinité de coefficients. Application au problème de l'attente à un guichet.
Comptes Rendus Acad. Sci. Paris
214, 452–456.
Oeuvres 2, 1187–1190.Google Scholar
[2]
Daniels, H. E. (1961) Mixtures of geometric distributions.
J. R. Statist. Soc.
B 23, 409–413.Google Scholar
[3]
Ewens, W. J. (1963) Numerical results and diffusion approximations in a genetic process.
Biometrika
50, 241–249.Google Scholar
[4]
Ewens, W. J. (1965) The adequacy of the diffusion approximation to certain distributions in genetics.
Biometrics
21, 386–394.CrossRefGoogle ScholarPubMed
[6]
Fisher, R. A. (1930)
The Genetical Theory of Natural Selection.
Clarendon Press, Oxford.CrossRefGoogle Scholar
[7]
Khazanie, R. G. and Mckean, H. E. (1966) A Mendelian Markov process with binomial transition probabilities.
Biometrika
53, 37–48.Google Scholar
[8]
Kimura, M. and Crow, J. F. (1963) On the maximum avoidance of inbreeding.
Genet. Res.
4, 399–415.CrossRefGoogle Scholar
[9]
Maruyama, T. (1971) An invariant property of a geographically structured finite population.
Genet. Res.
18, 81–84.CrossRefGoogle Scholar
[10]
Maruyama, T. (1972) Some invariant properties of a geographically structured finite population: distribution of heterozygotes under irreversible mutation.
Genet. Res.
20, 141–149.Google Scholar
[11]
Nei, M. (1971) Total number of individuals affected by a single deleterious mutation in large populations.
Theor. Pop. Biol.
2, 426–430.CrossRefGoogle ScholarPubMed
[12]
Robertson, A. (1964) The effect of non-random mating within inbred lines on the rate of inbreeding.
Genet. Res.
5, 164–167.CrossRefGoogle Scholar
[13]
Tanner, J. C. (1953) A problem of interference between two queues.
Biometrika
40, 58–69.CrossRefGoogle Scholar