Published online by Cambridge University Press: 14 July 2016
A manuscript with an unknown random number M of misprints is subjected to a series of proofreadings in an effort to detect and correct the misprints. On the nthproofreading, each remaining misprint is detected independently with probability pn– 1. Each proofreading costs an amount CP > 0, and if one stops after n proofreadings, each misprint overlooked costs an amount cn > 0. Two models are treated based on the distribution of M. In the Poisson model, the optimal stopping rule is seen to be a fixed sample size rule. In the binomial model, the myopic rule is optimal in many important cases. A generalization is made to problems in which individual misprints may have distinct probabilities of detection and distinct overlook costs.
Partial support provided by NSF Grant DMS 8413452. Research begun at UCLA on NIMH Grant 37188.