Published online by Cambridge University Press: 14 July 2016
Consider a sequence of observations Yk = Xk + ek, where {Xk : 1 ≦ k < ∞} are i.i.d. random variables having distribution function F and {ek : 1 ≦ k < ∞} are arbitrary random errors of observation. The stochastic geyser problem asks for conditions under which F can be uniquely determined from a knowledge of the sequence of Yk's. The objective of the present article is to show that, if F is continuous and strictly increasing and the sample quantiles of successive blocks {Xn+ 1Xn+ 2, …, Xn+ K} of particular lengths K can be a.s. estimated to within an error of size o(1) as K →∞, then we can almost surely determine F from a single realization of {Yk : 1 ≦ k < ∞}.
Research conducted while the author was visiting the University of California, Irvine, on sabbatical leave from California State College.