Published online by Cambridge University Press: 14 July 2016
A neural model with N interacting neurons is considered. A firing of neuron i delays the firing times of all other neurons by the same random variable θ(i), and in isolation the firings of the neuron occur according to a renewal process with generic interarrival time Y(i). The stationary distribution of the N-vector of inhibitions at a firing time is computed, and involves waiting distributions of GI/G/1 queues and ladder height renewal processes. Further, the distribution of the period of activity of a neuron is studied for the symmetric case where θ(i) and Y(i) do not depend upon i. The tools are probabilistic and involve path decompositions, Palm theory and random walks.
TT was partially supported by Astra Draco.