Published online by Cambridge University Press: 14 July 2016
This paper is a generalization to Markov chains of the work of Shepp [6] in the i.i.d case. Shepp studies the limiting values of the averages Tn = (Sn+ f(n) – Sn)/f(n) where Sn = X0 + X1+ · ·· + Xn, X0 = 0, n = 1, 2, ···, is a sum of mutually independent and identically distributed random variables. The function f takes positive integer values and non-decreasingly tends to infinity. Here we take a class of functions f in central position f(n) = [c log n], c > 0, n = 1, 2, ···. There are many refinements of the function f in the i.i.d case [1], [2]. Here we consider the more general case where X1, · ··, Xn is an irreducible and recurrent Markov chain. The state space of the chain is either compact or countable.
Research partly carried out while the author was on leave at LSTA, Université de Paris VI.