Article contents
Relaxation of monotone coupling conditions: Poisson approximation and beyond
Published online by Cambridge University Press: 16 November 2018
Abstract
It is well known that assumptions of monotonicity in size-bias couplings may be used to prove simple, yet powerful, Poisson approximation results. Here we show how these assumptions may be relaxed, establishing explicit Poisson approximation bounds (depending on the first two moments only) for random variables which satisfy an approximate version of these monotonicity conditions. These are shown to be effective for models where an underlying random variable of interest is contaminated with noise. We also state explicit Poisson approximation bounds for sums of associated or negatively associated random variables. Applications are given to epidemic models, extremes, and random sampling. Finally, we also show how similar techniques may be used to relax the assumptions needed in a Poincaré inequality and in a normal approximation result.
Keywords
- Type
- Research Papers
- Information
- Copyright
- Copyright © Applied Probability Trust 2018
References
- 2
- Cited by