Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T15:02:29.682Z Has data issue: false hasContentIssue false

A Recursion Formula for the Moments of the First Passage Time of the Ornstein-Uhlenbeck Process

Published online by Cambridge University Press:  30 January 2018

Dirk Veestraeten*
Affiliation:
University of Amsterdam
*
Postal address: Amsterdam School of Economics, University of Amsterdam, Roetersstraat 11, 1018WB Amsterdam, The Netherlands. Email address: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we use the Siegert formula to derive alternative expressions for the moments of the first passage time of the Ornstein-Uhlenbeck process through a constant threshold. The expression for the nth moment is recursively linked to the lower-order moments and consists of only n terms. These compact expressions can substantially facilitate (numerical) applications also for higher-order moments.

Type
Research Article
Copyright
© Applied Probability Trust 

References

Capocelli, R. M. and Ricciardi, L. M. (1971). Diffusion approximation and first passage time problem for a model neuron. Kybernetik (Berlin) 8, 214223.CrossRefGoogle ScholarPubMed
Cerbone, G., Ricciardi, L. M. and Sacerdote, L. (1981). Mean, variance and skewness of the first passage time for the Ornstein–Uhlenbeck process. Cybernet. Systems 12, 395429.Google Scholar
Chandrasekhar, S. (1943). Dynamical friction. II. The rate of escape of stars from clusters and the evidence for the operation of dynamical friction. Astrophys. J. 97, 263273.CrossRefGoogle Scholar
Gluss, B. (1967). A model for neuron firing with exponential decay of potential resulting in diffusion equations for probability density. Bull. Math. Biophys. 29, 233243.CrossRefGoogle Scholar
Iglehart, D. L. (1965). Limiting diffusion approximations for the many server queue and the repairman problem. J. Appl. Prob. 2, 429441.CrossRefGoogle Scholar
Inoue, J., Sato, S. and Ricciardi, L. M. (1995). On the parameter estimation for diffusion models of single neuron's activities. Biol. Cybern. 73, 209221.CrossRefGoogle ScholarPubMed
Jeffrey, A. and Zwillinger, D. (eds) (2000). Table of Integrals, Series, and Products, 6th edn. Academic Press, San Diego, CA.Google Scholar
Lánský, P. and Ditlevsen, S. (2008). A review of the methods for signal estimation in stochastic diffusion leaky integrate-and-fire neuronal models. Biol. Cybern. 99, 253262.Google Scholar
Lánský, P. and Sacerdote, L. (2001). The Ornstein–Uhlenbeck neuronal model with signal-dependent noise. Phys. Lett. A 285, 132140.Google Scholar
Lánský, P., Sacerdote, L. and Tomassetti, F. (1995). On the comparison of Feller and Ornstein–Uhlenbeck models for neural activity. Biol. Cybern. 73, 457465.Google Scholar
Nobile, A. G., Ricciardi, L. M. and Sacerdote, L. (1985). Exponential trends of Ornstein–Uhlenbeck first-passage-time densities. J. Appl. Prob. 22, 360369.Google Scholar
Ricciardi, L. M. and Sacerdote, L. (1979). The Ornstein–Uhlenbeck process as a model for neuronal activity. Biol. Cybern. 35, 19.Google Scholar
Ricciardi, L. M. and Sato, S. (1988). First-passage-time density and moments of the Ornstein–Uhlenbeck process. J. Appl. Prob. 25, 4357.Google Scholar
Roy, B. K. and Smith, D. R. (1969). Analysis of the exponential decay model of the neuron showing frequency threshold effects. Bull. Math. Biophys. 31, 341357.Google Scholar
Sacerdote, L. and Giraudo, M. T. (2013). Stochastic integrate and fire models: a review on mathematical methods and their applications. In Stochastic Biomathematical Models, Springer, Heidelberg, pp. 99148.Google Scholar
Sato, S. (1978). On the moments of the firing interval of the diffusion approximated model neuron. Math. Biosci. 39, 5370.Google Scholar
Siegert, A. J. F. (1951). On the first passage time probability problem. Phys. Rev. (2) 81, 617623.CrossRefGoogle Scholar
Vasicek, O. (1977). An equilibrium characterization of the term structure. J. Financ. Econ. 5, 177188.Google Scholar