Published online by Cambridge University Press: 04 April 2017
We study a simple random process in which vertices of a connected graph reach consensus through pairwise interactions. We compute outcome probabilities, which do not depend on the graph structure, and consider the expected time until a consensus is reached. In some cases we are able to show that this is minimised by Kn. We prove an upper bound for the p=0 case and give a family of graphs which asymptotically achieve this bound. In order to obtain the mean of the waiting time we also study a gambler's ruin process with delays. We give the mean absorption time and prove that it monotonically increases with p∈[0,1∕2] for symmetric delays.