Article contents
Reach of repulsion for determinantal point processes in high dimensions
Published online by Cambridge University Press: 16 November 2018
Abstract
Goldman (2010) proved that the distribution of a stationary determinantal point process (DPP) Φ can be coupled with its reduced Palm version Φ0,! such that there exists a point process η where Φ=Φ0,!∪η in distribution and Φ0,!∩η=∅. The points of η characterize the repulsive nature of a typical point of Φ. In this paper we use the first-moment measure of η to study the repulsive behavior of DPPs in high dimensions. We show that many families of DPPs have the property that the total number of points in η converges in probability to 0 as the space dimension n→∞. We also prove that for some DPPs, there exists an R∗ such that the decay of the first-moment measure of η is slowest in a small annulus around the sphere of radius √nR∗. This R∗ can be interpreted as the asymptotic reach of repulsion of the DPP. Examples of classes of DPP models exhibiting this behavior are presented and an application to high-dimensional Boolean models is given.
Keywords
MSC classification
- Type
- Research Papers
- Information
- Copyright
- Copyright © Applied Probability Trust 2018
References
- 3
- Cited by