Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-14T05:17:42.849Z Has data issue: false hasContentIssue false

Rates of convergence to the stationary distribution for k-dimensional diffusion processes

Published online by Cambridge University Press:  14 July 2016

P. L. Davies*
Affiliation:
Universität–GHS Essen
*
Postal address: Universität–GHS–Essen, Fachbereich 6, Mathematik, D-4300 Essen, W. Germany.

Abstract

Using a coupling technique, rates of convergence in total variation of certain k -dimensional diffusion processes to the stationary distribution are obtained. The results place assumptions only on the coefficients of the elliptic differential operator governing the diffusion.

Type
Research Paper
Copyright
Copyright © Applied Probability Trust 1986 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Bhattacharya, R. N. (1978) Criteria for recurrence and existence of invariant measures for multidimensional diffusions. Ann. Prob. 6, 541553; Correction 8 (1980), 1194–1195.CrossRefGoogle Scholar
[2] Florian, H.-J. (1984) Adiabatische Elimination bei Diffusionsprozessen. Dissertation, Universität–Gesamthochschule Essen.Google Scholar
[3] Friedman, A. (1975) Stochastic Differential Equations and Applications, Vol. 1. Academic Press, New York.Google Scholar
[4] Khas'minskii, R. Z. (1960) Ergodic properties of recurrent diffusion processes and stabilization of the solution to the Cauchy problem for parabolic equations. Theory Prob. Appl. V, 179196.Google Scholar
[5] Ladyzenskaja, O. A., Solonnikov, V. A. and Ural'Ceva, N. N. (1968) Linear and Quasilinear Equations of Parabolic Type. Translations of Mathematical Monographs 23, American Mathematical Society, Providence, RI.CrossRefGoogle Scholar
[6] Lindvall, T. (1982) On coupling of continuous-time renewal processes. J. Appl. Prob. 19, 8289.CrossRefGoogle Scholar
[7] Lindvall, T. (1983) On coupling of diffusion processes. J. Appl. Prob. 20, 8293.Google Scholar
[8] Papanicolaou, G. C., Stroock, D. W. and Varadhan, S. R. S. (1977) Martingale approach to some limit theorems. In 1976 Duke Turbulence Conference, Duke University Mathematics Series III, Mathematics Department, Duke University.Google Scholar
[9] Stroock, D. W. and Varadhan, S. R. S. (1970) On the support of diffusion processes with applications to the strong maximum principle. Proc. 6th Berkeley Symp. Math. Statist. Prob. 3, 333360.Google Scholar
[10] Stroock, D. W. and Varadhan, S. R. S. (1979) Multidimensional Diffusion Processes. Springer-Verlag, Berlin.Google Scholar