We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Technische Universität Wien, Institut für Statistik und Wahrscheinlichkeitstheorie, Wiedner Hauptstasse 8-10/107, Wien, A-1040 Austria. Email address: [email protected]
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
References
[1]
[1]Chen, X. (2001). Exact convergence rates for the distribution of particles in branching random walks. Ann. Appl. Prob.11, 1242–1262.Google Scholar
[2]
[2]Harris, T. E. (1963). The Theory of Branching Processes.Springer, Berlin.CrossRefGoogle Scholar
[3]
[3]Heyde, C. C. (1971). Some almost sure convergence theorems for branching processes. Z. Wahrscheinlichkeitsth.20, 189–192.Google Scholar
[4]
[4]Heyde, C. C. (1971). Some central limit analogues for super-critical Galton-Watson processes. J. Appl. Prob.8, 52–59.Google Scholar
[5]
[5]Heyde, C. C. and Brown, M. M. (1971). An invariance principle and some convergence rate results for branching processes. Z. Wahrscheinlichkeitsth.20, 271–278.Google Scholar
[6]
[6]Revesz, P. (1994). Random Walks of Infinitely Many Particles.World Scientific, Singapore.CrossRefGoogle Scholar