Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-27T21:14:44.768Z Has data issue: false hasContentIssue false

Parisian ruin of self-similar Gaussian risk processes

Published online by Cambridge University Press:  30 March 2016

Krzysztof Dębicki*
Affiliation:
University of Wrocław
Enkelejd Hashorva*
Affiliation:
University of Lausanne
Lanpeng Ji*
Affiliation:
University of Lausanne
*
Postal address: Mathematical Institute, University of Wrocław, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland.
∗∗ Postal address: University of Lausanne, UNIL-Dorigny, 1015 Lausanne, Switzerland.
∗∗ Postal address: University of Lausanne, UNIL-Dorigny, 1015 Lausanne, Switzerland.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we derive the exact asymptotics of the probability of Parisian ruin for self-similar Gaussian risk processes. Additionally, we obtain the normal approximation of the Parisian ruin time and derive an asymptotic relation between the Parisian and the classical ruin times.

Type
Research Papers
Copyright
Copyright © 2015 by the Applied Probability Trust 

References

Albin, J. M. P. and Choi, H. (2010). A new proof of an old result by Pickands. Electron. Commun. Prob. 15 339-345.CrossRefGoogle Scholar
Asmussen, S. and Albrecher, H. (2010). Ruin Probabilities, 2nd edn. World Scientific, Hackensack, NJ.CrossRefGoogle Scholar
Berman, S. M. (1992). Sojourns and Extremes of Stochastic Processes. Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA.CrossRefGoogle Scholar
Chesney, M., Jeanblanc-Picqué, M. and Yor, M. (1997). Brownian excursions and Parisian barrier options. Adv. Appl. Prob. 29 165-184.CrossRefGoogle Scholar
Czarna, I. (2014). Parisian ruin probability with a lower ultimate bankrupt barrier. Scand. Actuarial J. 10.1080/03461238.2014.926288.Google Scholar
Czarna, I. and Palmowski, Z. (2011). Ruin probability with Parisian delay for a spectrally negative Lévy risk process. J. Appl. Prob. 48 984-1002.CrossRefGoogle Scholar
Czarna, I. and Palmowski, Z. (2014). Dividend problem with Parisian delay for a spectrally negative Lévy risk process. J. Optimization Theory Appl. 161 239-256.CrossRefGoogle Scholar
Czarna, I. and Palmowski, Z. (2014). Parisian quasi-stationary distributions for asymmetric Lévy processes. Preprint. Available at http://arxiv.org/abs/1404.3367.Google Scholar
Czarna, I., Palmowski, Z. and Światek, P. (2014). Binomial discrete time ruin probability with Parisian delay. Preprint. Available at http://arxiv.org/abs/1403.7761.Google Scholar
Dassios, A. and Wu, S. (2008). Parisian ruin with exponential claims. Preprint. Available at http://stats.lse.ac.uk/angelos/.Google Scholar
Debicki, K. (2002). Ruin probability for Gaussian integrated processes. Stoch. Process. Appl. 98 151-174.CrossRefGoogle Scholar
Debicki, K. and Kisowski, P. (2008). A note on upper estimates for Pickands constants. Statist. Prob. Lett. 78 2046-2051.CrossRefGoogle Scholar
Debicki, K. and Kosiński, K. M. (2014). On the infimum attained by the reflected fractional Brownian motion. Extremes 17 431-446.CrossRefGoogle Scholar
Debicki, K., Hashorva, E. and Ji, L. (2015). Gaussian risk models with financial constraints. Scand. Actuarial J. 6, 469481.CrossRefGoogle Scholar
Debicki, K., Hashorva, E. and Ji, L. (2014). Tail asymptotics of supremum of certain Gaussian processes over threshold dependent random intervals. Extremes 17 411-429.CrossRefGoogle Scholar
Debicki, K., Michna, Z. and Rolski, T. (2003). Simulation of the asymptotic constant in some fluid models. Stoch. Models 19 407-423.CrossRefGoogle Scholar
Dieker, A. B. (2005). Extremes of Gaussian processes over an infinite horizon. Stoch. Process. Appl. 115 207-248.CrossRefGoogle Scholar
Dieker, A. B. and Yakir, B. (2014). On asymptotic constants in the theory of extremes for Gaussian processes. Bernoulli 20 1600-1619.CrossRefGoogle Scholar
Embrechts, P. and Maejima, M. (2002). Selfsimilar Processes. Princeton University Press.Google Scholar
Embrechts, P., Klüppelberg, C. and Mikosch, T. (1997). Modelling Extremal Events (Appl. Math. (New York) 33), Springer, Berlin.CrossRefGoogle Scholar
Griffin, P. S. (2013). Convolution equivalent Lévy processes and first passage times. Ann. Appl. Prob. 23 1506-1543.CrossRefGoogle Scholar
Griffin, P. S. and Maller, R. A. (2012). Path decomposition of ruinous behavior for a general Lévy insurance risk process. Ann. Appl. Prob. 22 1411-1449.CrossRefGoogle Scholar
Hashorva, E. and Ji, L. (2014). Approximation of passage times of γ-reflected processes with FBM input.break J. Appl. Prob. 51 713-726.CrossRefGoogle Scholar
Hashorva, E. and Ji, L. (2014). Extremes and first passage times of correlated fractional Brownian motions. Stoch. Models 30 272-299.CrossRefGoogle Scholar
Hashorva, E. and Ji, L. (2015). Piterbarg theorems for chi-processes with trend. Extremes 18 37-64.CrossRefGoogle Scholar
Hashorva, E., Ji, L. and Piterbarg, V. I. (2013). On the supremum of γ-reflected processes with fractional Brownian motion as input. Stoch. Process. Appl. 123 4111-4127.CrossRefGoogle Scholar
Hüsler, J. and Piterbarg, V. (1999). Extremes of a certain class of Gaussian processes. Stoch. Process. Appl. 83 257-271.CrossRefGoogle Scholar
Hüsler, J. and Piterbarg, V. (2008). A limit theorem for the time of ruin in a Gaussian ruin problem. Stoch. Process. Appl. 118 2014-2021.CrossRefGoogle Scholar
Hüsler, J. and Zhang, Y. (2008). On first and last ruin times of Gaussian processes. Statist. Prob. Lett. 78 1230-1235.CrossRefGoogle Scholar
Hüsler, J., Piterbarg, V. and Rumyantseva, E. (2011). Extremes of Gaussian processes with a smooth random variance. Stoch. Process. Appl. 121 2592-2605.CrossRefGoogle Scholar
Klüppelberg, C. and Kühn, C. (2004). Fractional Brownian motion as a weak limit of Poisson shot noise processes—with applications to finance. Stoch. Process. Appl. 113 333-351.CrossRefGoogle Scholar
Landriault, D., Renaud, J.-F. and Zhou, X. (2014). An insurance risk model with Parisian implementation delays. Methodol. Comput. Appl. Prob. 16 583-607.CrossRefGoogle Scholar
Loeffen, R., Czarna, I. and Palmowski, Z. (2013). Parisian ruin probability for spectrally negative Lévy processes. Bernoulli 19 599-609.CrossRefGoogle Scholar
Mandjes, M. (2007). Large Deviations for Gaussian Queues. John Wiley, Chichester.CrossRefGoogle Scholar
Michna, Z. (1998). Self-similar processes in collective risk theory. J. Appl. Math. Stoch. Analysis 11 429-448.CrossRefGoogle Scholar
Palmowski, Z. and Światek, P. (2014). A note on first passage probabilities of a Lévy process reflected at a general barrier. Preprint. Available at http://arxiv.org/abs/1403.1025.Google Scholar
Pickands, J. III (1969). Upcrossing probabilities for stationary Gaussian processes. Trans. Amer. Math. Soc. 145 51-73.CrossRefGoogle Scholar
Piterbarg, V. I. (1972). On the paper by J. Pickands “Upcrossing probabilities for stationary Gaussian processes”. Vestnik Moskov. Univ. Ser. I Mat. Meh. 27 25-30.Google Scholar
Piterbarg, V. I. (1996). Asymptotic Methods in the Theory of Gaussian Processes and Fields (Trans. Math. Monogr. 148), American Mathematical Society, Providence, RI.Google Scholar