Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-04T03:17:30.819Z Has data issue: false hasContentIssue false

Optimal control of arrivals to multiserver queues in a random environment

Published online by Cambridge University Press:  14 July 2016

Werner E. Helm*
Affiliation:
Technische Hochschule Darmstadt
Karl-Heinz Waldmann*
Affiliation:
Freie Universität Berlin
*
Present address: Abt. Wiss. Datenverarbeitung, E. Merck, Postfach 4119, D-6100 Darmstadt 1, W. Germany.
∗∗Postal address: Institut für Quantitative Ökonomik und Statistik, Freie Universität Berlin, Garystr. 21, D-1000 Berlin 33, W. Germany.

Abstract

We study the problem of optimal customer admission to multiserver queues. These queues are assumed to live in an extraneous environment which changes in a semi-Markovian way. Arrivals, service mechanism and random reward/cost structure may all depend on these surroundings. Included as special cases are SM/M/c queues, in particular G/M/c queues, in a random environment. By a direct inductive approach we establish optimality of a generalized control-limit rule depending on the actual environment. Particular emphasis is laid on different applications that show the versatility of the proposed setup.

Type
Research Papers
Copyright
Copyright © Applied Probability Trust 1984 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Çinlar, E. (1967) Queues with semi-Markovian arrivals. J. Appl. Prob. 4, 365379.Google Scholar
Van Hee, K. M. (1978) Bayesian Control of Markov Chains. Mathematical Centre Tracts 95, Math. Centrum, Amsterdam.Google Scholar
Hinderer, K. (1970) Foundations of Non-stationary Dynamic Programming With Discrete Time Parameter. Lecture Notes in Operations Research and Mathematical Systems 33, Springer-Verlag, Berlin.Google Scholar
Johansen, S. G. and Stidham, S. (1980) Optimal control of arrivals to a stochastic input-output system. Adv. Appl. Prob. 12, 972999.Google Scholar
Kirstein, B. M. (1976) Monotonicity and comparability of time-homogeneous Markov processes with discrete state space. Math. Operationsforsch. Statist. 7, 151168.CrossRefGoogle Scholar
Langen, H. J. (1981) Convergence of dynamic programming models. Math. Operat. Res. 6, 493512.Google Scholar
Langen, H. J. (1982) Applying the method of phases in the optimization of queuing systems. Adv. Appl. Prob. 14, 122142.CrossRefGoogle Scholar
Lippman, S. A. (1975) Applying a new device in the optimization of queuing systems. Operat. Res. 23, 687710.Google Scholar
Neuts, M. F. (1979) A versatile Markovian point process. J. Appl. Prob. 16, 764779.Google Scholar
Neuts, M. F. (1981) Matrix Geometric Solutions to Stochastic Models. Johns Hopkins University Press, Baltimore.Google Scholar
Rieder, U. (1975) Bayesian dynamic programming. Adv. Appl. Prob. 7, 330348.Google Scholar
Schäl, M. (1975) Conditions for optimality in dynamic programming and for the limit of n-stage optimal policies to be optimal. Z. Wahrscheinlichkeitsth. 32, 179196.Google Scholar
Schellhaas, H. (1980) Markov renewal decision processes with finite horizon. OR-Spektrum 2, 3340.CrossRefGoogle Scholar
Stidham, S. (1978) Socially and individually optimal control of arrivals to a GI/M/1 queue. Management Sci. 24, 15981610.CrossRefGoogle Scholar
Stidham, S. (1982) Optimal control of arrivals to queues and networks of queues. 21st IEEE conference on decision and control, Orlando.Google Scholar
Stidham, S. and Prabhu, N. U. (1974) Optimal control of queueing systems. In Mathematical Methods in Queueing Theory, Lecture Notes in Economics and Mathematical Systems 98, Springer-Verlag, Berlin, 263294.CrossRefGoogle Scholar
Stoyan, D. (1977) Qualitative Eigenschaften und Abschätzungen stochastischer Modelle. Akademie Verlag, Berlin.Google Scholar