Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T14:50:30.719Z Has data issue: false hasContentIssue false

Optimal claims with fixed payoff structure

Published online by Cambridge University Press:  30 March 2016

Carole Bernard
Affiliation:
University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L3G1, Canada. Email address: [email protected].
Ludger Rüschendorf
Affiliation:
University of Freiburg, Eckerstraße 1, 79104 Freiburg, Germany. Email address: [email protected].
Steven Vanduffel
Affiliation:
Vrije Universiteit Brussel, Pleinlaan 2, 1050 Bruxelles, Belgium. Email address: [email protected].
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Dybvig (1988) introduced the interesting problem of how to construct in the cheapest possible way a terminal wealth with desired distribution. This idea has induced a series of papers concerning generality, consequences, and applications. As the optimized claims typically follow the trend in the market, they are not useful for investors who wish to use them to protect an existing portfolio. For this reason, Bernard, Moraux, Rüschendorf and Vanduffel (2014b) imposed additional state-dependent constraints as a way of controlling the payoff structure. The present paper extends this work in various ways. In order to obtain optimal claims in general models we allow in this paper for extended contracts. We deal with general multivariate price processes and dispense with several of the regularity assumptions in the previous work (in particular, we omit any continuity assumption). State dependence is modeled by requiring terminal wealth to have a fixed copula with a benchmark wealth. In this setting, we are able to characterize optimal claims. We apply the theoretical results to deal with several hedging and expected utility maximization problems of interest.

Type
Part 5. Finance and econometrics
Copyright
Copyright © Applied Probability Trust 2014 

References

Ansel, J. P., and Stricker, C. (1994). Couverture des actifs contingents et prix maximum. Ann. Inst. H. Poincaré Prob. Statist. 30, 303315.Google Scholar
Barlow, R. E., Bartholomev, D. J., Brenner, J. M., and Brunk, H. D. (1972). Statistical Inference Under Order Restrictions. The Theory and Application of Isotonic Regression. John Wiley, London.Google Scholar
Bernard, C., and Vanduffel, S. (2014a). Financial bounds for insurance claims. J. Risk Insurance 81, 2756.Google Scholar
Bernard, C., and Vanduffel, S. (2014b). Mean-variance optimal portfolios in the presence of a benchmark with applications to fraud detection. Europ. J. Operat. Res. 234, 469480.Google Scholar
Bernard, C., Boyle, P. P., and Vanduffel, S. (2014a). Explicit representation of cost-efficient strategies. To appear in Finance.CrossRefGoogle Scholar
Bernard, C., Maj, M., and Vanduffel, S. (2011). Improving the design of financial products in a multidimensional Black-Scholes market. N. Amer. Actuarial J. 15, 7796.CrossRefGoogle Scholar
Bernard, C., Moraux, F., Rüschendorf, L., and Vanduffel, S. (2014b). Optimal payoffs under state-dependent constraints. Preprint. Available at http://arxiv.org/abs/1308.6465v2.Google Scholar
Browne, S. (1999). Beating a moving target: optimal portfolio strategies for outperforming a stochastic benchmark. Finance Stoch. 3, 275294.Google Scholar
Carlier, G., and Dana, R.-A. (2011). Optimal demand for contingent claims when agents have law invariant utilities. Math. Finance 21, 169201.Google Scholar
Cox, J. C., and Huang, C.-F. (1989). Optimal consumption and portfolio policies when asset prices follow a diffusion process. J. Econom. Theory 49, 3383.CrossRefGoogle Scholar
Delbaen, F., and Schachermayer, W. (1995). The no-arbitrage property under a change of numéraire. Stoch. Stoch. Reports 53, 213226.Google Scholar
Dybvig, P. H. (1988). Distributional analysis of portfolio choice. J. Business 61, 369393.Google Scholar
Fréchet, M. (1940). Les Probabilités Associées à Un Système d'événements Compatibles et Dépendants. I. Événements en Nombre Fini Fixe (Actual. Sci. Ind. 859). Hermann et Cie, Paris.Google Scholar
Fréchet, M. (1951). Sur les tableaux de corré lation dont les marges sont données. Ann. Univ. Lyon 14, 5377.Google Scholar
Goll, T. and Rüschendorf, L. (2001). Minimax and minimal distance martingale measures and their relationship to portfolio optimization. Finance Stoch. 5, 557581.Google Scholar
He, H., and Pearson, N. D. (1991a). Consumption and portfolio policies with incomplete markets and short-sale constraints: the finite-dimensional case. Math. Finance 1, 110.Google Scholar
He, H., and Pearson, N. D. (1991b). Consumption and portfolio policies with incomplete markets and short-sale constraints: the infinite-dimensional case. J. Econom. Theory 54, 259304.CrossRefGoogle Scholar
Hoeffding, W. (1940). Mass stabinvariante Korrelationstheorie. Schrift. Math. Instit. Angew. Math. Univ. Berlin 5, 179233.Google Scholar
Jacka, S. D. (1992) A martingale representation result and an application to incomplete financial markets. Math. Finance 2, 239250.Google Scholar
Markowitz, H. (1952). Portfolio selection. J. Finance 7, 7791.Google Scholar
Merton, R. C. (1971). Optimum consumption and portfolio rules in a continuous-time model. J. Econom. Theory 3, 373413.Google Scholar
Quiggin, J. (1993). Generalized Expected Utility Theory - The Rank-Dependent Model. Kluwer.Google Scholar
Rheinländer, T., and Sexton, J. (2011). Hedging Derivatives (Adv. Ser. Statist. Sci. Appl. Prob. 15). World Scientific, Hackensack, NJ.Google Scholar
Rüschendorf, L. (1981). Stochastically ordered distributions and monotonicity of the OC-function of sequential probability ratio tests. Math. Operat. Statist. Ser. Statist. 12, 327338.Google Scholar
Rüschendorf, L. (2009). On the distributional transform, Sklar's theorem, and the empirical copula process. J. Statist. Planning Infer. 139, 39213927.Google Scholar
Rüschendorf, L. (2012). Risk bounds, worst case dependence and optimal claims and contracts. In Proc. AFMATH Conf. Brussel, pp. 2336.Google Scholar
Rüschendorf, L. (2013). Mathematical Risk Analysis. Springer, Heidelberg.CrossRefGoogle Scholar
Shefrin, H., and Statman, M. (2000). Behavioral portfolio theory. J. Financial Quant. Anal. 35, 127151.Google Scholar
Tversky, A., and Kahneman, D. (1992). Advances in prospect theory: cumulative representation of uncertainty. J. Risk Uncertainty 5, 297323.Google Scholar
Vanduffel, S., Chernih, A., Maj, M., and Schoutens, W. (2009). A note on the suboptimality of path-dependent payoffs in Lévy markets. Appl. Math. Finance 16, 315330.CrossRefGoogle Scholar
Vanduffel, S., Ahcan, A., Henrard, L., and Maj, M. (2012). An explicit option-based strategy that outperforms dollar cost averaging. Internat. J. Theoret. Appl. Finance 15, 19 pp.CrossRefGoogle Scholar
Von Hammerstein, E. A., Lütkebohmert, E., Rüschendorf, L., and Wolf, V. (2013). Optimal payoffs in multivariate Lévy markets. Preprint.Google Scholar
Von Neumann, J., and Morgenstern, O. (1947). Theory of Games and Economic Behavior. Princeton University Press.Google Scholar
Yaari, M. E. (1987). The dual theory of choice under risk. Econometrica 55, 95115.Google Scholar