Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T19:42:55.206Z Has data issue: false hasContentIssue false

On Threshold Strategies and the Smooth-Fit Principle for Optimal Stopping Problems

Published online by Cambridge University Press:  14 July 2016

Stéphane Villeneuve*
Affiliation:
Université de Toulouse 1
*
Postal address: Manufacture des Tabacs, Université de Toulouse 1, 21 Allée de Brienne, 31000 Toulouse, France. Email address: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we investigate sufficient conditions that ensure the optimality of threshold strategies for optimal stopping problems with finite or perpetual maturities. Our result is based on a local-time argument that enables us to give an alternative proof of the smooth-fit principle. Moreover, we present a class of optimal stopping problems for which the propagation of convexity fails.

Type
Research Article
Copyright
Copyright © Applied Probability Trust 2007 

References

Alvarez, L. R. H. (2003). On the properties of r-excessive mappings for a class of diffusions. Ann. Appl. Prob. 13, 15171533.Google Scholar
Borodin, A. N. and Salminen, P. (1996). Handbook on Brownian Motion—Facts and Formulae. Birkhäuser, Basel.Google Scholar
Dayanik, S. and Karatzas, I. (2003). On the optimal stopping problem for one-dimensional diffusions. Stoch. Process. Appl. 107, 173212.CrossRefGoogle Scholar
Décamps, J. P., Mariotti, T. and Villeneuve, S. (2006). Irreversible investment in alternative projects. Econometric Theory 28, 425448.Google Scholar
Dixit, A. K. and Pindyck, R. S. (1994). Investment Under Uncertainty. Princeton University Press.Google Scholar
Dupuis, P. and Wang, H. (2005). On the convergence from discrete to continuous time in an optimal stopping problem. Ann. Appl. Prob. 15, 13391366.Google Scholar
Ekström, E. (2004). Properties of American option prices. Stoch. Process. Appl. 114, 265278.Google Scholar
El Karoui, N. (1981). Les aspects probabilistes du contrôle stochastique. In Ninth Saint Flour Prob. Summer School (Lecture Notes Math. 876), Springer, Berlin, pp. 74239.Google Scholar
El Karoui, N., Jeanblanc, M. and Shreve, S. (1998). Robustness of the Black and Scholes formula. Math. Finance 8, 93126.Google Scholar
Itô, K. and McKean, H. P. Jr. (1965). Diffusion Processes and Their Sample Paths. Springer, Berlin.Google Scholar
Janson, S. and Tysk, J. (2003). Volatility time and properties of option prices. Ann. Appl. Prob. 13, 890913.Google Scholar
Jönsson, H., Kukush, A. G. and Sylvestrov, D. S. (2005). Threshold structure for optimal stopping strategy for American type option. I. Theory Prob. Math. Statist. 71, 93103.Google Scholar
Karatzas, I. and Shreve, S. (1988). Brownian Motion and Stochastic Calculus. Springer, New York.CrossRefGoogle Scholar
Karatzas, I. and Shreve, S. (1998). Methods of Mathematical Finance. Springer, Berlin.Google Scholar
Kotlow, D. B. (1973). A free boundary problem connected with the optimal stopping problem for diffusion processes. Trans. Amer. Math. Soc. 184, 457478.Google Scholar
Kyprianou, A. E. and Pistorius, M. R. (2003). Perpetual options and Canadization through fluctuation theory. Ann. Appl. Prob. 13, 10771098.Google Scholar
Mandl, P. (1968). Analytical Treatment of One-Dimensional Markov Processes. Springer, New York.Google Scholar
Martini, C. (1992). Propagation of convexity by Markovian and martingalian semigroups. Potential Anal. 10, 133175.Google Scholar
McDonald, R. and Siegel, D. (1986). The value of waiting to invest. Quart. J. Econom. 101, 707727.Google Scholar
Øksendal, B. (1998). Stochastic Differential Equations: An Introduction with Applications, 5th edn. Springer, Berlin.Google Scholar
Salminen, P. (1985). Optimal stopping of one-dimensional diffusions. Math. Nachr. 124, 85101.Google Scholar
Villeneuve, S. (1999). Exercise regions of American options on several assets. Finance Stoch. 3, 295322.Google Scholar