No CrossRef data available.
Published online by Cambridge University Press: 14 July 2016
Consider a time-homogeneous Markov branching process. We construct reduced processes, based on whether the length of line of descent of particles of this process are (a) greater than or (b) at most equal to, τ units of time, for some fixed τ ≧ 0. We show that in both cases the reduced processes retain the branching property, but the latter does not retain the time homogeneity. We investigate finite-time and asymptotic properties of the reduced processes. Based on a realization of the original process and a realization of a reduced process, observed continuously over a time interval [0, T] for T > 0, we propose estimators for the different parameters involved, including qτ, the probability that the original process becomes extinct before τ units of time, and f(j)(qτ), the jth derivative of the offspring probability generating function f(s) at qτ when qτ is known. We study the properties of these estimators and derive their asymptotic distributions, under the assumption that the original process is supercritical.
On study leave from University of Poona, Pune, India.