Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Różański, Roman
1992.
Recursive estimation of intensity function of a Poisson random field.
Journal of Statistical Planning and Inference,
Vol. 33,
Issue. 2,
p.
165.
Swami, A.
and
Sadler, B.
1996.
Channel and intensity estimation for a class of point processes.
p.
440.
Helmers, Roelof
Wayan Mangku, I.
and
Zitikis, Ričardas
2003.
Consistent estimation of the intensity function of a cyclic Poisson process.
Journal of Multivariate Analysis,
Vol. 84,
Issue. 1,
p.
19.
Helmers, Roelof
Mangku, I.Wayan
and
Zitikis, Ričardas
2005.
Statistical properties of a kernel-type estimator of the intensity function of a cyclic Poisson process.
Journal of Multivariate Analysis,
Vol. 92,
Issue. 1,
p.
1.
Helmers, Roelof
Mangku, I. Wayan
and
Zitikis, Ričardas
2007.
A non-parametric estimator for the doubly periodic Poisson intensity function.
Statistical Methodology,
Vol. 4,
Issue. 4,
p.
481.
Helmers, Roelof
and
Mangku, I. Wayan
2009.
Estimating the intensity of a cyclic Poisson process in the presence of linear trend.
Annals of the Institute of Statistical Mathematics,
Vol. 61,
Issue. 3,
p.
599.
Helmers, Roelof
Wang, Qiying
and
Zitikis, Ričardas
2009.
Confidence regions for the intensity function of a cyclic Poisson process.
Statistical Inference for Stochastic Processes,
Vol. 12,
Issue. 1,
p.
21.
Shao, Nan
and
Lii, Keh-Shin
2011.
Modelling Non-Homogeneous Poisson Processes with Almost Periodic Intensity Functions.
Journal of the Royal Statistical Society Series B: Statistical Methodology,
Vol. 73,
Issue. 1,
p.
99.
Ma, Zong-Gang
and
Ma, Chao-Qun
2013.
Pricing catastrophe risk bonds: A mixed approximation method.
Insurance: Mathematics and Economics,
Vol. 52,
Issue. 2,
p.
243.
BELITSER, EDUARD
SERRA, PAULO
and
ZANTEN, HARRY VAN
2013.
Estimating the Period of a Cyclic Non‐Homogeneous Poisson Process.
Scandinavian Journal of Statistics,
Vol. 40,
Issue. 2,
p.
204.
Ramezan, Reza
Marriott, Paul
and
Chenouri, Shojaeddin
2014.
Multiscale analysis of neural spike trains.
Statistics in Medicine,
Vol. 33,
Issue. 2,
p.
238.
Chen, Ningyuan
Lee, Donald K. K.
and
Negahban, Sahand N.
2019.
Super-resolution estimation of cyclic arrival rates.
The Annals of Statistics,
Vol. 47,
Issue. 3,
Saul Gaitan, Rodrigo
and
Lii, Keh‐Shin
2021.
On the Estimation of Periodicity or Almost Periodicity in Inhomogeneous Gamma Point‐Process Data.
Journal of Time Series Analysis,
Vol. 42,
Issue. 5-6,
p.
711.
Gaitan, Rodrigo Saul
and
Lii, Keh-Shin
2021.
The first and second order moment structure of an inhomogeneous gamma point process.
Communications in Statistics - Theory and Methods,
Vol. 50,
Issue. 3,
p.
582.
Albrecher, Hansjörg
Araujo-Acuna, José Carlos
and
Beirlant, Jan
2021.
Fitting Nonstationary Cox Processes: An Application to Fire Insurance Data.
North American Actuarial Journal,
Vol. 25,
Issue. 2,
p.
135.
Chernoyarov, O. V.
Dachian, S.
Kutoyants, Yu. A.
and
Zyulkov, A. V.
2021.
On Estimation Errors in Optical Communication and Location.
Automation and Remote Control,
Vol. 82,
Issue. 12,
p.
2041.
Rong, Xinhui
and
Solo, Victor
2022.
Cramer-Rao Bound for the Time-Varying Poisson.
p.
5757.
Wei, Mian
Nousias, Sotiris
Gulve, Rahul
Lindell, David B.
and
Kutulakos, Kiriakos N.
2023.
Passive Ultra-Wideband Single-Photon Imaging.
p.
8101.
Chen, Ningyuan
Wang, Chun
and
Wang, Longlin
2023.
Learning and Optimization with Seasonal Patterns.
Operations Research,
Ibrahim, Riza Andrian
Sukono
Napitupulu, Herlina
and
Ibrahim, Rose Irnawaty
2024.
Earthquake Bond Pricing Model Involving the Inconstant Event Intensity and Maximum Strength.
Mathematics,
Vol. 12,
Issue. 6,
p.
786.