Article contents
On queues with periodic Poisson input
Published online by Cambridge University Press: 14 July 2016
Abstract
This paper is concerned with asymptotic results for a single-server queue having periodic Poisson input and general service-time distribution, and carries forward the analysis of this model initiated in Harrison and Lemoine. First, it is shown that a theorem of Hooke relating the stationary virtual and actual waiting-time distributions for the GI/G/1 queue extends to the periodic Poisson model; it is then pointed out that Hooke's theorem leads to the extension (developed in [3]) of a related theorem of Takács. Second, it is demonstrated that the asymptotic distribution for the server-load process at a fixed ‘time of day' coincides with the distribution for the supremum, over the time horizon [0,∞), of the sum of a stationary compound Poisson process with negative drift and a continuous periodic function. Some implications of this characterization result for the computation and approximation of the asymptotic distributions are then discussed, including a direct proof, for the periodic Poisson case, of a recent result of Rolski comparing mean asymptotic customer waiting time with that of a corresponding M/G/1 system.
Keywords
- Type
- Research Papers
- Information
- Copyright
- Copyright © Applied Probability Trust 1981
Footnotes
This work was sponsored by the National Science Foundation under Grant No. ENG–7824568.
References
- 18
- Cited by