Published online by Cambridge University Press: 14 July 2016
A Monte Carlo method is proposed and demonstrated for obtaining an approximate algebraic solution to linear equations with algebraic coefficients arising from first order master equations at steady state. Exact solutions are hypothetically obtainable from the spanning trees of an associated graph, each tree contributing an algebraic term. The number of trees can be enormous. However, because of a high degeneracy, many trees yield the same algebraic term. Thus an approximate algebraic solution may be obtained by taking a Monte Carlo sampling of the trees, which yields an estimate of the frequency of each algebraic term. The accuracy of such solutions is discussed and algorithms are given for picking spanning trees of a graph with uniform probability. The argument is developed in terms of a lattice model for membrane transport, but should be generally applicable to problems in unimolecular kinetics and network analysis. The solution of partition functions and multivariable problems by analogous methods is discussed.