Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-09T01:23:14.715Z Has data issue: false hasContentIssue false

On an integral equation for first-passage-time probability densities

Published online by Cambridge University Press:  14 July 2016

L. M. Ricciardi*
Affiliation:
Unioersitd di Napoli
L. Sacerdote*
Affiliation:
Unioersitd di Salerno
S. Sato*
Affiliation:
Uniuersitd di Napoli
*
Postal address: Istituto di Matematica ‘Renato Caccioppoli’, Universita di Napoli, Via Mezzocannone 8, 1-80134 Napoli, Italy.
∗∗ Postal address: Istituto di Scienze dell ‘Inforrnazione, Universita de Salerno, Salerno, Italy.
Postal address: Istituto di Matematica ‘Renato Caccioppoli’, Universita di Napoli, Via Mezzocannone 8, 1-80134 Napoli, Italy.

Abstract

We prove that for a diffusion process the first-passage-time p.d.f. through a continuous-time function with bounded derivative satisfies a Volterra integral equation of the second kind whose kernel and right-hand term are probability currents. For the case of the standard Wiener process this equation is solved in closed form not only for the class of boundaries already introduced by Park and Paranjape [15] but also for all boundaries of the type S(I) = a + bt ‘/p (p ∼ 2, a, b E ∼) for which no explicit analytical results have previously been available.

Type
Research Papers
Copyright
Copyright © Applied Probability Trust 1984 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

On leave of absence from the Faculty of Engineering Science, Osaka University.

References

[1] Anderssen, K. S., De Hoog, F. R. and Weiss, R. (1973) On the numerical solution of Brownian motion processes. J. Appl. Prob. 10, 409418.CrossRefGoogle Scholar
[2] Blake, I. F. and Lindsey, W. C. (1973) Level crossing problems for random processes. IEEE Trans. Information Theory IT-19, 295315.CrossRefGoogle Scholar
[3] Cerbone, G., Ricciardi, L. M. and Sacerdote, L. (1981) Mean variance and skewness of the first passage time for the Ornstein–Uhlenbeck process. Cybernetics and Systems 12, 395429.CrossRefGoogle Scholar
[4] Cox, J. R. and Miller, H. D. (1965) The Theory of Stochastic Processes. Wiley, New York.Google Scholar
[5] Daniels, H. E. (1969) The minimum of a stationary Markov process superimposed on a U-shaped trend. J. Appl. Prob. 6, 399408.CrossRefGoogle Scholar
[6] De Griffi, E. M. and Favella, L. (1978) On a weakly singular Volterra integral equation. Rome: Pubblicazioni IAC, Serie III, N. 167.Google Scholar
[7] Durbin, J. (1971) Boundary crossing probabilities for Brownian motion and Poisson processes and techniques for computing the power of the Kolmogorov–Smirnov test. J. Appl. Prob. 8, 431453.CrossRefGoogle Scholar
[8] Favella, L., Reineri, M. T., Ricciardi, L. M. and Sacerdote, L. (1982) First passage time problems and some related computational methods. Cybernetics and Systems 13, 95128.CrossRefGoogle Scholar
[9] Feller, W. (1936) Zür Theorie der stochastischen Prozesse. Math. Ann. 104, 113160.Google Scholar
[10] Fortet, R. (1943) Les fonctions aléatoires du type de Markoff associées à certaines équations linéaires aux dérivées partielles du type parabolique. J. Math. Pures Appl. 22, 177243.Google Scholar
[11] Heath, R. A. (1981) A tandem random walk model for psychological discrimination. British J. Math. Statist. Psychol. 34, 7692.CrossRefGoogle ScholarPubMed
[12] Holden, A. V. (1976) Models of the Stochastic Activity of Neurons. Lecture Notes in Biomathematics, Springer-Verlag, Berlin.CrossRefGoogle Scholar
[13] Keilson, J. and Ross, H. (1975) Passage time distribution for the Ornstein–Uhlenbeck process. Sel. Tables Math. Statist. 3, 233328.Google Scholar
[14] Maruyama, T. (1977) Stochastic Problems in Population Genetics. Lecture Notes in Biomathematics, Springer-Verlag, Berlin.CrossRefGoogle Scholar
[15] Park, C. and Paranjape, S. R. (1974) Probabilities of Wiener paths crossing differentiable curves. Pacific J. Math. 53, 579583.CrossRefGoogle Scholar
[16] Park, C. and Schuurmann, F. J. (1976) Evaluations of barrier-crossing probabilities of Wiener paths. J. Appl. Prob. 13, 267275.CrossRefGoogle Scholar
[17] Park, C. and Schuurmann, F. S. (1980) Evaluations of absorption probabilities for the Wiener process on large intervals. J. Appl. Prob. 17, 363372.CrossRefGoogle Scholar
[18] Ratcliff, R. (1980) A note on modelling accumulation of information when the rate of accumulation changes with time. J. Math. Psychol. 21, 178184.CrossRefGoogle Scholar
[19] Ricciardi, L. M. (1976) On the transformation of diffusion processes into the Wiener process. J. Math. Anal. Appl. 54, 185199.CrossRefGoogle Scholar
[20] Ricciardi, L. M. (1977) Diffusion Processes and Related Topics in Biology. Lecture Notes in Biomathematics, Springer-Verlag, Berlin.CrossRefGoogle Scholar
[21] Ricciardi, L. M. and Sacerdote, L. (1979) The Ornstein–Uhlenbeck process as a model for neuronal activity. I. Mean and variance of the firing time. Biol. Cybernetics 35, 19.CrossRefGoogle Scholar
[22] Ricciardi, L. M. and Sato, S. (1983) A note on the evaluation of the first passage time probability densities. J. Appl. Prob. 20, 197201.CrossRefGoogle Scholar
[23] Ricciardi, L. M., Sacerdote, L. and Sato, S. (1983) Diffusion approximation and first passage time problem for a model neuron II. Outline of a computation method. Math. Biosci. 64, 2944.CrossRefGoogle Scholar
[24] Sato, S. (1977) Evaluation of the first passage time probability to a square root boundary for the Wiener process. J. Appl. Prob. 14, 850856.CrossRefGoogle Scholar
[25] Sato, S. (1978) On the moments of the firing interval of the diffusion approximated model neuron. Math. Biosci. 39, 5370.CrossRefGoogle Scholar
[26] Smith, C. S. (1972) A note on boundary-crossing probabilities for the Brownian motion. J. Appl. Prob. 9, 857861.CrossRefGoogle Scholar
[27] Stratonovich, R. L. (1963) Topics in the Theory of Random Noise. Gordon and Breach, New York.Google Scholar
[28] Tricomi, F. (1970) Integral Equations. Interscience, New York.Google Scholar
[29] Wichura, M. J. (unpublished) Quoted in Ricciardi, L. M. (1977) Diffusion Processes and Related Topics in Biology. Lecture Notes in Biomathematics. Springer-Verlag, Berlin, pp. 145 ff. Google Scholar