Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T00:17:21.836Z Has data issue: false hasContentIssue false

A note on the rate of convergence to equilibrium for Erlang's model in the subcritical case

Published online by Cambridge University Press:  14 July 2016

Michael Voit*
Affiliation:
Universität Tübingen
*
Postal address: Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany. Email address: [email protected]

Abstract

We derive some asymptotic results for the rate of convergence to equilibrium for the number of busy servers in an M/M/N/N queue with input rate λN and service rate 1 for N → ∞ in the ‘subcritical’ case λ ∈]0, 1[. These results improve recent contributions of Fricker, Robert and Tibi.

Type
Short Communications
Copyright
Copyright © Applied Probability Trust 2000 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cooper, R. B. (1981). Introduction to Queueing Theory. Arnold, London.Google Scholar
Diaconis, P. (1996). The cutoff phenomenon in finite Markov chains. Proc. Nat. Acad. Sci. 93, 16591664.Google Scholar
Diaconis, P., Graham, R. L., and Morrison, J. A. (1990). Asymptotic analysis of a random walk on a hypercube with many dimensions. Random Struct. Alg. 1, 5172.CrossRefGoogle Scholar
Feller, W. (1966). An Introduction to Probability Theory and its Applications II. John Wiley, New York.Google Scholar
Fricker, C., Robert, P., and Tibi, D. (1999). On the rates of convergence of Erlang's model. J. Appl. Prob. 36, 118.Google Scholar
Guillemin, F., and Simonian, A. (1995). Transient characteristics of an M/M/∞ system. Adv. Appl. Prob. 27, 862888.Google Scholar
Karlin, S., and McGregor, J. (1957). The classification of birth and death processes. Trans. Amer. Math. Soc. 86, 366400.Google Scholar
Knessl, C. (1990). On the transient behavior of the M/M/m/m loss model. Comm. Statist. Stoch. Models 6, 749776.Google Scholar
Takács, L. (1962). Introduction to the Theory of Queues. Oxford University Press, New York.Google Scholar
Voit, M. (1996). Asymptotic distributions for the Ehrenfest urn and related random walks. J. Appl. Prob. 33, 340356.CrossRefGoogle Scholar
Voit, M. (1996). Asymptotic behavior of heat kernels on spheres of large dimensions. J. Multivariate Anal. 59, 230248.CrossRefGoogle Scholar