Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by Crossref.
Doney, R. A.
1985.
Conditional limit theorems for asymptotically stable random walks.
Zeitschrift f�r Wahrscheinlichkeitstheorie und Verwandte Gebiete,
Vol. 70,
Issue. 3,
p.
351.
Afanas’ev, V. I.
1987.
On Functionals of a Random Walk Prior to First Reaching the Negative Half-Axis.
Theory of Probability & Its Applications,
Vol. 31,
Issue. 4,
p.
683.
Afanas'ev, V. I.
1987.
Mean value of a function of a random walk up to the time of the first passage to the semiaxis.
Mathematical Notes of the Academy of Sciences of the USSR,
Vol. 42,
Issue. 6,
p.
992.
Afanas'ev, V. I.
1990.
Local time of a random walk up to the first passage to the semiaxis.
Mathematical Notes of the Academy of Sciences of the USSR,
Vol. 48,
Issue. 6,
p.
1173.
Borovkov, K. A.
and
Vatutin, V A.
1996.
On distribution tails and expectations of maxima in critical branching processes.
Journal of Applied Probability,
Vol. 33,
Issue. 3,
p.
614.
Афанасьев, Валерий Иванович
and
Afanasyev, Valeriy Ivanovich
2000.
О моменте достижения максимума критическим ветвящимся процессом в случайной среде и остановленным случайным блужданием.
Дискретная математика,
Vol. 12,
Issue. 2,
p.
31.
Perfilev, Elena
and
Wachtel, Vitali
2018.
Local asymptotics for the area under the random walk excursion.
Advances in Applied Probability,
Vol. 50,
Issue. 2,
p.
600.
Afanasyev, Valeriy Ivanovich
2019.
Двуграничная задача для случайного блуждания с ограничением на максимальное приращение.
Дискретная математика,
Vol. 31,
Issue. 3,
p.
3.
Buraczewski, Dariusz
Iksanov, Alexander
and
Mallein, Bastien
2021.
On the derivative martingale in a branching random walk.
The Annals of Probability,
Vol. 49,
Issue. 3,
Afanasyev, Valeriy I.
2021.
Two-sided problem for the random walk with bounded maximal increment.
Discrete Mathematics and Applications,
Vol. 31,
Issue. 2,
p.
79.
Chaumont, Loïc
and
Kyprianou, Andreas E.
2021.
A Lifetime of Excursions Through Random Walks and Lévy Processes.
Vol. 78,
Issue. ,
p.
1.
Lê, Hoài Nhân
Lâm, Hoàng Chương
and
Dương, Thị Bé Ba
2024.
Martingale sinh bởi bước đi ngẫu nhiên một chiều có điều kiện.
CTU Journal of Science,
Vol. 60,
Issue. ,
p.
52.