Article contents
Monotone Markov processes with respect to the reversed hazard rate ordering: an application to reliability
Published online by Cambridge University Press: 14 July 2016
Abstract
We consider a repairable system with a finite state space which evolves in time according to a Markov process as long as it is working. We assume that this system is getting worse and worse while running: if the up-states are ranked according to their degree of increasing degradation, this is expressed by the fact that the Markov process is assumed to be monotone with respect to the reversed hazard rate and to have an upper triangular generator. We study this kind of process and apply the results to derive some properties of the stationary availability of the system. Namely, we show that, if the duration of the repair is independent of its completeness degree, then the more complete the repair, the higher the stationary availability, where the completeness degree of the repair is measured with the reversed hazard rate ordering.
- Type
- Research Papers
- Information
- Copyright
- Copyright © by the Applied Probability Trust 2001
References
- 7
- Cited by