Article contents
Maximum dynamic entropy models
Published online by Cambridge University Press: 14 July 2016
Abstract
A formal approach to produce a model for the data-generating distribution based on partial knowledge is the well-known maximum entropy method. In this approach, partial knowledge about the data-generating distribution is formulated in terms of some information constraints and the model is obtained by maximizing the Shannon entropy under these constraints. Frequently, in reliability analysis the problem of interest is the lifetime beyond an age t. In such cases, the distribution of interest for computing uncertainty and information is the residual distribution. The information functions involving a residual life distribution depend on t, and hence are dynamic. The maximum dynamic entropy (MDE) model is the distribution with the density that maximizes the dynamic entropy for all t. We provide a result that relates the orderings of dynamic entropy and the hazard function for distributions with monotone densities. Applications include dynamic entropy ordering within some parametric families of distributions, orderings of distributions of lifetimes of systems and their components connected in series and parallel, record values, and formulation of constraints for the MDE model in terms of the evolution paths of the hazard function and mean residual lifetime function. In particular, we identify classes of distributions in which some well-known distributions, including the mixture of two exponential distributions and the mixture of two Pareto distributions, are the MDE models.
Keywords
MSC classification
- Type
- Research Papers
- Information
- Copyright
- Copyright © Applied Probability Trust 2004
References
- 33
- Cited by