Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-16T15:32:53.788Z Has data issue: false hasContentIssue false

Limiting conditional and conditional invariant distributions for the Poisson process with negative drift

Published online by Cambridge University Press:  14 July 2016

Raúl Fierro*
Affiliation:
Universidad Católica de Valparaíso
Servet Martínez*
Affiliation:
Universidad de Chile
Jaime San Martín*
Affiliation:
Universidad de Chile
*
Postal address: Departamento de Matemáticas, Universidad Católica de Valparaíso, Casilla 4059, Valparaíso, Chile.
∗∗Postal address: Departamento de Ingenierí a Matemática, Universidad de Chile, Casilla 170/3-Correo 3, Santiago, Chile.
∗∗Postal address: Departamento de Ingenierí a Matemática, Universidad de Chile, Casilla 170/3-Correo 3, Santiago, Chile.

Abstract

In this paper we study the conditional limiting behaviour for the virtual waiting time process for the queue M/D/1. We describe the family of conditional invariant distributions which are continuous and parametrized by the eigenvalues λ ∊ (0, λc], as it happens for diffusions. In this case, there is a periodic dependence of the limiting conditional distributions on the initial point and the minimal conditional invariant distribution is a mixture, according to an exponential law, of the limiting conditional distributions.

Type
Research Papers
Copyright
Copyright © Applied Probability Trust 1999 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cavender, J. A. (1978). Quasi-stationary distributions of birth and death processes. Adv. Appl. Prob. 10, 570586.Google Scholar
Collet, P., Martínez, S. and San Martín, J. (1995). Asymptotic laws for one-dimensional diffusions conditioned to non-absorption. Ann. Prob. 23, 13001314.CrossRefGoogle Scholar
Ferrari, P., Kesten, H., Martínez, S., and Picco, P. (1995). Existence of quasistationary distributions. A renewal dynamical approach. Ann. Prob. 23, 501521.Google Scholar
Jacka, S., and Roberts, G. (1995). Weak convergence of conditioned processes on a countable space. J. Appl. Prob. 32, 902916.Google Scholar
Kijima, M. (1992). On the existence of quasi-stationary distributions in denumerable R-transient Markov chains. J. Appl. Prob. 29, 2136.CrossRefGoogle Scholar
Kijima, M., Nair, M. G., Pollett, P. K., and Van Doorn, E. A. (1997). Limiting conditional distribution for birth–death processes. Adv. Appl. Prob. 29, 185204.Google Scholar
Kyprianou, E. K. (1971). On the quasi-stationary distribution of the virtual waiting time in queues with Poisson arrivals. J. Appl. Prob. 8, 494507.Google Scholar
Mandl, P. (1961). Spectral theory of semi-groups connected with diffusion processes and its applications. Czech. Math. J. 11, 558568.Google Scholar
Martínez, S. and San Martín, J. (1994). Quasi-stationary distributions for a Brownian motion with drift and associated limit laws. J. Appl. Prob. 31, 911920.CrossRefGoogle Scholar
Martínez, S., Picco, P. and San Martín, J. (1998). Domain of attraction of quasi-stationary distributions for the Brownian motion with drift. Adv. Appl. Prob. 30, 385408.Google Scholar
Pollett, P. (1986). On the equivalence of μ-invariant measures for the minimal process and its q-matrix. Stoch. Proc. Appl. 22, 203221.Google Scholar
Pyke, R. (1959). The supremum and infimum of the Poisson process. Ann. Math. Stat. 30, 568576.Google Scholar
Seneta, E., and Vere-Jones, D. (1966). On quasi stationary distributions in discrete time Markov chains with a denumerable infinity of states. J. Appl. Prob. 3, 404434.Google Scholar
Vere-Jones, D. (1962). Geometric ergodicity in denumerable Markov chains. Quart. J. Math. Oxford 13, 728.CrossRefGoogle Scholar
Yaglom, A. M. (1947). Certain limit theorems of the theory of branching stochastic processes. Dokl. Acad. Nauk. SSSR 56, 795798.Google Scholar