Published online by Cambridge University Press: 14 July 2016
The trie is a sort of digital tree. Ideally, to achieve balance, the trie should grow from an unbiased source generating keys of bits with equal likelihoods. In practice, the lack of bias is not always guaranteed. We investigate the distance between randomly selected pairs of nodes among the keys in a biased trie. This research complements that of Christophi and Mahmoud (2005); however, the results and some of the methodology are strikingly different. Analytical techniques are still useful for moments calculation. Both mean and variance are of polynomial order. It is demonstrated that the standardized distance approaches a normal limiting random variable. This is proved by the contraction method, whereby the limit distribution is shown to approach the fixed-point solution of a distributional equation in the Wasserstein metric space.