Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T01:13:17.905Z Has data issue: false hasContentIssue false

Letter to the Editor

Published online by Cambridge University Press:  14 July 2016

Qi Zheng*
Affiliation:
Department of Epidemiology and Biostatistics, School of Rural Public Health, Texas A&M Health Science Center, College Station, Texas 77843, USA
*
Email address: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Letter
Copyright
Copyright © Applied Probability Trust 2009 

References

[1] Flajolet, P. and Odlyzko, A. (1990). Singularity analysis of generating functions. SIAM J. Discrete Math. 3, 216240.Google Scholar
[2] Goldie, C. M. (1995). Asymptotics of the Luria-Delbrück distribution. J. Appl. Prob. 32, 840841.Google Scholar
[3] Jaeger, D. and Sarkar, S. (1995). On the distribution of bacterial mutants: the effects of differential fitness of mutants and non-mutants. Genetica 96, 217223.Google Scholar
[4] Kemp, A. W. (1994). Comments on the Luria-Delbrück distribution. J. Appl. Prob. 31, 822828.CrossRefGoogle Scholar
[5] Ma, W. T., Sandri, G. vH. and Sarkar., S. (1992). Analysis of the Luria-Delbrück distribution using discrete convolution powers. J. Appl. Prob. 29, 255267.CrossRefGoogle Scholar
[6] Pakes, A. G. (1993). Remarks on the Luria-Delbrück distribution. J. Appl. Prob. 30, 991994.Google Scholar
[7] Prodinger, H. (1996). Asymptotics of the Luria-Delbrück distribution via singularity analysis. J. Appl. Prob. 33, 282283.Google Scholar
[8] Stewart, F. M. (1991). Fluctuation analysis: the effect of plating efficiency. Genetica 54, 5155.Google Scholar
[9] Zheng, Q. (1999). Progress of a half century in the study of the Luria-Delbrück distribution. Math. Biosci. 162, 132.Google Scholar
[10] Zheng, Q. (2008). A note on plating efficiency in fluctuation experiments. Math. Biosci. 216, 150153.Google Scholar
[11] Zheng, Q. (2008). On Bartlett's formulation of the Luria-Delbrück mutation model. Math. Biosci. 215, 4854.Google Scholar