Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-12-01T04:08:49.786Z Has data issue: false hasContentIssue false

A geometric rate of convergence to the equilibrium for Boltzmann processes with multiple particle interactions

Published online by Cambridge University Press:  14 July 2016

Brigitte Chauvin*
Affiliation:
Université Paris VI
Gaston Giroux*
Affiliation:
Université de Sherbrooke
*
Postal address: Université Paris VI, Laboratoire de Probabilités, 4, Place Jussieu, tour 56, 75230 Paris Cedex 05, France.
∗∗Postal address: Départment de Mathématiques, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada.

Abstract

We construct Boltzmann processes using the formalism of random trees. We are then able to extend previous results about convergence toward the equilibrium law to interactions involving random numbers of particles. We even show a geometric rate of convergence for an extended class of processes, especially for those having a scaling invariant interaction mechanism.

Type
Research Papers
Copyright
Copyright © Applied Probability Trust 1990 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Research supported in part by NSERC, Canada, under Grant No A-5365 and in part by a grant of FCAR, Gouvernement du Québec.

References

Barbour, A. D. and Hall, P. (1984) On the rate of Poisson convergence. Math. Proc. Camb. Phil. Soc. 95, 473480.CrossRefGoogle Scholar
Brown, T. C. (1984) Poisson approximation and the definition of the Poisson process. Amer. Math. Monthly 91, 116123.CrossRefGoogle Scholar
Cercignani, C. (1988) The Boltzmann Equation and its Applications. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Chauvin, B. (1986) Arbres et processus de Bellman-Harris. Ann. Inst. Henri Poincaré 22, 209232.Google Scholar
Futcher, F. J. and Hoare, M. R. (1983) The p-q model Boltzmann equation. Physica 122A, 516546.CrossRefGoogle Scholar
Futcher, F. J., Hoare, M. R., Hendriks, E. M. and Ernst, M. H. (1980) Soluble Boltzmann equations for internal state and Maxwell models. Physica 101A, 185204.CrossRefGoogle Scholar
Kielek, Z. (1988) Asymptotic behavior of solutions of the Tjon-Wu equations. Ann. Polon. Math. Google Scholar
Kogan, M. N. (1969) Rarefied Gas Dynamics. Plenum Press, New York.CrossRefGoogle Scholar
Lecam, L. (1960) An approximation theorem for the Poisson binomial distribution. Pacific J. Math. 10, 11811197.CrossRefGoogle Scholar
Mckean, H. P. (1966) Speed of approach to equilibrium for Kac's caricature of a Maxwellian gas. Arch. Rat. Mech. Anal. 21, 343367.CrossRefGoogle Scholar
Mckean, H. P. (1967) An exponential formula for solving Boltzmann's equation for a Maxwellian gas. J. Comb. Theory 2, 358382.CrossRefGoogle Scholar
Neveu, J. (1986) Arbres et processus de Galton-Watson. Ann. Inst. Henri Poincaré 22, 199207.Google Scholar
Rossberg, K. (1983) A First Course in Analytical Mechanics. Wiley, New York.Google Scholar
Sznitman, A.-S. (1984) Equations de types de Boltzmann, spatialement homogènes. Z. Wahrscheinlichkeitsth. 66, 559592.CrossRefGoogle Scholar
Uhlenbeck, G. and Ford, G. W. (1963) Lectures in Statistical Mechanics. American Mathematical Association, Providence, RI.Google Scholar
Wild, E. (1951) On Boltzmann's equation in the kinetic theory of gases. Proc. Camb. Phil. Soc. 47, 602609.CrossRefGoogle Scholar