Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Gutiérrez, Ramón
Román, Patrica
and
Torres, Francisco
2001.
Inference on some parametric functions in the univeriate lognormal diffusion process with exogenous factors.
Test,
Vol. 10,
Issue. 2,
p.
357.
GUTIÉRREZ, R.
ROMÁN, P.
ROMERO, D.
and
TORRES, F.
2003.
FORECASTING FOR THE UNIVARIATE LOGNORMAL DIFFUSION PROCESS WITH EXOGENOUS FACTORS.
Cybernetics and Systems,
Vol. 34,
Issue. 8,
p.
709.
Kuan, Grace C.H.
and
Webber, Nick
2003.
Pricing Barrier Options with One-Factor Interest Rate Models.
The Journal of Derivatives,
Vol. 10,
Issue. 4,
p.
33.
Lindner, Benjamin
2004.
Moments of the First Passage Time Under External Driving.
Journal of Statistical Physics,
Vol. 117,
Issue. 3-4,
p.
703.
GUTIÉRREZ, R.
GUTIÉRREZ-SANCHEZ, R.
NAFIDI, A.
ROMÁN, P.
and
TORRES, F.
2005.
INFERENCE IN GOMPERTZ-TYPE NONHOMOGENEOUS STOCHASTIC SYSTEMS BY MEANS OF DISCRETE SAMPLING.
Cybernetics and Systems,
Vol. 36,
Issue. 2,
p.
203.
Lindner, Benjamin
and
Longtin, André
2005.
Effect of an exponentially decaying threshold on the firing statistics of a stochastic integrate-and-fire neuron.
Journal of Theoretical Biology,
Vol. 232,
Issue. 4,
p.
505.
Gutiérrez, R.
Roldán, C.
Gutiérrez-Sánchez, R.
and
Angulo, J. M.
2005.
Estimation and prediction of a 2D lognormal diffusion random field.
Stochastic Environmental Research and Risk Assessment,
Vol. 19,
Issue. 4,
p.
258.
Gutiérrez, R.
Gutiérrez-Sánchez, R.
and
Nafidi, A.
2006.
The Stochastic Rayleigh diffusion model: Statistical inference and computational aspects. Applications to modelling of real cases.
Applied Mathematics and Computation,
Vol. 175,
Issue. 1,
p.
628.
Gutiérrez, R.
Gutiérrez‐Sánchez, R.
Nafidi, A.
and
Ramos, E.
2007.
A diffusion model with cubic drift: statistical and computational aspects and application to modelling of the global CO2 emission in Spain.
Environmetrics,
Vol. 18,
Issue. 1,
p.
55.
Vezzoli, R.
De Michele, C.
Pavlopoulos, H.
and
Scholes, R. J.
2008.
Dryland ecosystems: The coupled stochastic dynamics of soil water and vegetation and the role of rainfall seasonality.
Physical Review E,
Vol. 77,
Issue. 5,
Román, P.
Serrano, J.J.
and
Torres, F.
2008.
First-passage-time location function: Application to determine first-passage-time densities in diffusion processes.
Computational Statistics & Data Analysis,
Vol. 52,
Issue. 8,
p.
4132.
Gutiérrez, R.
Gutiérrez-Sánchez, R.
and
Nafidi, A.
2008.
Trend analysis using nonhomogeneous stochastic diffusion processes. Emission of CO2; Kyoto protocol in Spain.
Stochastic Environmental Research and Risk Assessment,
Vol. 22,
Issue. 1,
p.
57.
Gutiérrez-Jáimez, R.
Román, P.
Romero, D.
Serrano, J. J.
and
Torres, F.
2008.
SOME TIME RANDOM VARIABLES RELATED TO A GOMPERTZ-TYPE DIFFUSION PROCESS.
Cybernetics and Systems,
Vol. 39,
Issue. 5,
p.
467.
Downes, Andrew N.
and
Borovkov, Konstantin
2008.
First Passage Densities and Boundary Crossing Probabilities for Diffusion Processes.
Methodology and Computing in Applied Probability,
Vol. 10,
Issue. 4,
p.
621.
Román-Román, Patricia
Romero, Desirée
and
Torres-Ruiz, Francisco
2010.
A diffusion process to model generalized von Bertalanffy growth patterns: Fitting to real data.
Journal of Theoretical Biology,
Vol. 263,
Issue. 1,
p.
59.
Román-Román, P.
Serrano-Pérez, J.J.
and
Torres-Ruiz, F.
2012.
An R package for an efficient approximation of first-passage-time densities for diffusion processes based on the FPTL function.
Applied Mathematics and Computation,
Vol. 218,
Issue. 17,
p.
8408.
Román-Román, Patricia
and
Torres-Ruiz, Francisco
2012.
Modelling logistic growth by a new diffusion process: Application to biological systems.
Biosystems,
Vol. 110,
Issue. 1,
p.
9.
Albano, Giuseppina
Giorno, Virginia
Román-Román, Patricia
and
Torres-Ruiz, Francisco
2012.
On the therapy effect for a stochastic growth Gompertz-type model.
Mathematical Biosciences,
Vol. 235,
Issue. 2,
p.
148.
Albano, Giuseppina
Giorno, Virginia
Román-Román, Patricia
and
Torres-Ruiz, Francisco
2013.
On the effect of a therapy able to modify both the growth rates in a Gompertz stochastic model.
Mathematical Biosciences,
Vol. 245,
Issue. 1,
p.
12.
Sacerdote, Laura
and
Giraudo, Maria Teresa
2013.
Stochastic Biomathematical Models.
Vol. 2058,
Issue. ,
p.
99.