Article contents
Extremes of Homogeneous Gaussian Random Fields
Published online by Cambridge University Press: 30 January 2018
Abstract
Let {X(s, t): s, t ≥ 0} be a centred homogeneous Gaussian field with almost surely continuous sample paths and correlation function r(s, t) = cov(X(s, t), X(0, 0)) such that r(s, t) = 1 - |s|α1 - |t|α2 + o(|s|α1 + |t|α2), s, t → 0, with α1, α2 ∈ (0, 2], and r(s, t) < 1 for (s, t) ≠ (0, 0). In this contribution we derive an asymptotic expansion (as u → ∞) of P(sup(sn1(u),tn2(u)) ∈[0,x]∙[0,y]X(s, t) ≤ u), where n1(u)n2(u) = u2/α1+2/α2Ψ(u), which holds uniformly for (x, y) ∈ [A, B]2 with A, B two positive constants and Ψ the survival function of an N(0, 1) random variable. We apply our findings to the analysis of extremes of homogeneous Gaussian fields over more complex parameter sets and a ball of random radius. Additionally, we determine the extremal index of the discretised random field determined by X(s, t).
Keywords
MSC classification
- Type
- Research Article
- Information
- Copyright
- © Applied Probability Trust
References
- 8
- Cited by