Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-09T01:36:16.382Z Has data issue: false hasContentIssue false

Domains of attraction for positive and discrete tempered stable distributions

Published online by Cambridge University Press:  28 March 2018

Michael Grabchak*
Affiliation:
University of North Carolina at Charlotte
*
* Postal address: Department of Mathematics and Statistics, The University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223-0001, USA. Email address: [email protected]

Abstract

We introduce a large and flexible class of discrete tempered stable distributions, and analyze the domains of attraction for both this class and the related class of positive tempered stable distributions. Our results suggest that these are natural models for sums of independent and identically distributed random variables with tempered heavy tails, i.e. tails that appear to be heavy up to a point, but ultimately decay faster.

Type
Research Papers
Copyright
Copyright © Applied Probability Trust 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Baccini, A., Barabesi, L. and Stracqualursi, L. (2016). Random variate generation and connected computational issues for the Poisson–Tweedie distribution. Comput. Statist. 31, 729748. CrossRefGoogle Scholar
[2]Barczy, M. and Pap, G. (2006). Portmanteau theorem for unbounded measures. Statist. Prob. Lett. 76, 18311835. Google Scholar
[3]Barndorff-Nielsen, O. E., Pollard, D. G. and Shephard, N. (2012). Integer-valued Lévy processes and low latency financial econometrics. Quant. Finance 12, 587605. Google Scholar
[4]Bianchi, M. L., Rachev, S. T., Kim, Y. S. and Fabozzi, F. J. (2011). Tempered infinitely divisible distributions and processes. Theory Prob. Appl. 55, 226. Google Scholar
[5]Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1987). Regular Variation (Encyclopedia Math. Appl. 27). Cambridge University Press. CrossRefGoogle Scholar
[6]Cao, L. and Grabchak, M. (2014). Smoothly truncated Lévy walks: toward a realistic mobility model. In Proc. 33rd Internat. Performance Comput. Commun. Conf., IEEE. Google Scholar
[7]Chakrabarty, A. and Meerschaert, M. M. (2011). Tempered stable laws as random walk limits. Statist. Prob. Lett. 81, 989997. Google Scholar
[8]Chakrabarty, A. and Samorodnitsky, G. (2012). Understanding heavy tails in a bounded world or, is a truncated heavy tail heavy or not? Stoch. Models 28, 109143. Google Scholar
[9]Christoph, G. and Schreiber, K. (1998). Discrete stable random variables. Statist. Prob. Lett. 37, 243247. Google Scholar
[10]El-Shaarawi, A. H., Zhu, R. and Joe, H. (2011). Modelling species abundance using the Poisson-Tweedie family. Environmetrics 22, 152164. Google Scholar
[11]Feller, W. (1971). An Introduction to Probability Theory and Its Applications, Vol. II, 2nd edn. John Wiley, New York. Google Scholar
[12]Grabchak, M. (2012). On a new class of tempered stable distributions: moments and regular variation. J. Appl. Prob. 49, 10151035. Google Scholar
[13]Grabchak, M. (2016). Tempered Stable Distributions: Stochastic Models for Multiscale Processes. Springer, Cham. Google Scholar
[14]Grabchak, M. and Molchanov, S. A. (2015). Limit theorems and phase transitions for two models of summation of independent identically distributed random variables with a parameter. Theory Prob. Appl. 59, 222243. Google Scholar
[15]Grabchak, M. and Samorodnitsky, G. (2010). Do financial returns have finite or infinite variance? A paradox and an explanation. Quant. Finance 10, 883893. Google Scholar
[16]Griffin, P. S., Maller, R. A. and Roberts, D. (2013). Finite time ruin probabilities for tempered stable insurance risk processes. Insurance Math. Econom. 53, 478489. Google Scholar
[17]Holla, M. S. (1966). On a Poisson-inverse Gaussian distribution. Metrika 11, 115121. Google Scholar
[18]Hougaard, P. (1987). Modelling multivariate survival. Scand. J. Statist. 14, 291304. Google Scholar
[19]Hougaard, P., Lee, M.-L. T. and Whitmore, G. A. (1997). Analysis of overdispersed count data by mixtures of Poisson variables and Poisson processes. Biometrics 53, 12251238. Google Scholar
[20]Jørgensen, B. and Kokonendji, C. C. (2016). Discrete dispersion models and their Tweedie asymptotics. AStA Adv. Statist. Anal. 100, 4378. Google Scholar
[21]Kallenberg, O. (2002). Foundations of Modern Probability, 2nd edn. Springer, New York. CrossRefGoogle Scholar
[22]Klebanov, L. B. and Slámová, L. (2013). Integer valued stable random variables. Statist. Prob. Lett. 83, 15131519. Google Scholar
[23]Klebanov, L. B. and Slámová, L. (2016). Discrete stable and casual stable random variables. J. Math. Sci. (N. Y.) 218, 161166. Google Scholar
[24]Klebanov, L. B., Rachev, S. T. and Szekely, G. J. (1999). Pre-limit theorems and their applications. Acta Appl. Math. 58, 159174. Google Scholar
[25]Meerschaert, M. M. and Scheffler, H.-P. (2001). Limit Distributions for Sums of Independent Random Vectors: Heavy Tails in Theory and Practice. John Wiley, New York. Google Scholar
[26]Palmer, K. J., Ridout, M. S. and Morgan, B. J. T. (2008). Modelling cell generation times by using the tempered stable distribution. J. R. Statist. Soc. C 57, 379397. Google Scholar
[27]Pollard, D. (1984). Convergence of Stochastic Processes. Springer, New York. Google Scholar
[28]Rosiński, J. (2007). Tempering stable processes. Stoch. Process. Appl. 117, 677707. CrossRefGoogle Scholar
[29]Rosiński, J. and Sinclair, J. L. (2010). Generalized tempered stable processes. In Stability in Probability (Banach Center Publ. 90), Polish Academy of Sciences, Warsaw, pp. 153170. Google Scholar
[30]Sato, K.-I. (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press. Google Scholar
[31]Seshadri, V. (1993). The Inverse Gaussian Distribution: A Case Study in Exponential Families. Oxford University Press. Google Scholar
[32]Steutel, F. W. and van Harn, K. (1979). Discrete analogues of self-decomposability and stability. Ann. Prob. 7, 893899. Google Scholar
[33]Steutel, F. W. and van Harn, K. (2004). Infinite Divisibility of Probability Distributions on the Real Line. Marcel Dekker, New York. Google Scholar
[34]Terdik, G. and Woyczyński, W. A. (2006). Rosiński measures for tempered stable and related Ornstien-Uhlenbeck processes. Prob. Math. Statist. 26, 213243. Google Scholar
[35]Tweedie, M. C. K. (1984). An index which distinguishes between some important exponential families. In Statistics: Applications and New Directions, Indian Statistical Institute, Calcutta, pp. 579604. Google Scholar
[36]Valdivieso, L., Schoutens, W. and Tuerlinckx, F. (2009). Maximum likelihood estimation in processes of Ornstein-Uhlenbeck type. Statist. Infer. Stoch. Process. 12, 119. Google Scholar
[37]Zhu, R. and Joe, H. (2009). Modelling heavy-tailed count data using a generalized Poisson-inverse Gaussian family. Statist. Prob. Lett. 79, 16951703. Google Scholar