Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T07:47:44.745Z Has data issue: false hasContentIssue false

Distributions on the circle and sphere

Published online by Cambridge University Press:  14 July 2016

Abstract

A survey is made of the mathematical properties of, and the arithmetic relationships between, various distributions on the circle and the sphere. The Brownian motion and angular Gaussian distributions are shown in computer-drawn graphs to bracket the von Mises–Fisher distributions.

Type
Part 5 — Statistical Theory
Copyright
Copyright © 1982 Applied Probability Trust 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnold, K. J. (1941) On Spherical Probability Distributions. Ph.D. Thesis, Massachusetts Institute of Technology.Google Scholar
Beran, R. J. (1979) Exponential models for directional data. Ann. Statist. 7, 11621178.CrossRefGoogle Scholar
Briden, J. C. and Arthur, G. R. (1981) Precision of measurement of remanent magnetization. Canad. J. Earth Sci. 18, 527538.Google Scholar
Fisher, R. A. (1953) Dispersion on a sphere. Proc. R. Soc. London A 217, 295305.CrossRefGoogle Scholar
Harrison, C. G. A. (1980) Analysis of the magnetic vector in a simple rock specimen. Geophys. J. R. Astronom. Soc. 60, 489–482.Google Scholar
Hartman, P. and Watson, G. S. (1974) ‘Normal’ distribution functions on spheres and modified Bessel functions. Ann. Prob. 2, 593607.Google Scholar
Haviland, E. K. (1941) On the distribution functions of the reciprocal of a function and of a function reduced mod 1. Amer. J. Math. 63, 408414.Google Scholar
Kendall, D. G. (1974) Pole-seeking brownian motion and bird navigation. J. R. Statist. Soc. B 36, 365417.Google Scholar
Kent, J. T. (1977) The infinite divisibility of the von Mises–Fisher distribution for all values of the parameter in all dimensions. Proc. London Math. Soc. (3) 35, 359384.Google Scholar
Kent, J. T. (1978) Some probabilistic properties of Bessel functions. Ann. Prob. 6, 760770.CrossRefGoogle Scholar
Kent, J. T. (1981) Convolution measures of infinitely divisible distributions. Math. Proc. Camb. Phil. Soc. 90, 141153.Google Scholar
Kent, J. T. (1982) The spectral decomposition of a diffusion hitting time. Ann. Prob. 10.CrossRefGoogle Scholar
Levy, P. (1939) L'addition des variables aléatoires définies sur une circonférence. Bull. Soc. Math. France 67, 114.Google Scholar
Mardia, K. V. (1972) Statistics of Directional Data. Academic Press, New York.Google Scholar
Mardia, K. V. (1975) Characterization of directional distributions. In Statistical Distributions for Scientific Work , ed. Patil, G. P. et al., Riedel, Dordrecht.Google Scholar
Roberts, P. H. and Ursell, H. D. (1960) Random walk on a sphere and on a Riemanian manifold. Phil. Trans. R. Soc. London A 252, 317356.Google Scholar
Schmidt, W. M. (1977) Small Fractional Parts of Polynomials. Monograph 32, CBMS Regional Conference Series in Mathematics.Google Scholar
Stapleton, J. H. (1963) A characterization of the uniform distribution on a compact topological group. Ann. Math. Statist. 34, 319326.Google Scholar
Stephens, M. A. (1963) Random walk on a circle. Biometrika 50, 385390.Google Scholar
Von Mises, R. (1918) Über die ‘Ganzzahligeit’ der Atomgewicht und verwandte Fragen. Phys. Zeit. 19, 490500.Google Scholar
Watson, G. S. (1981) The estimation of paleomagnetic pole positions. In Stochastics and Probability: Essays in Honour of C. R. Rao , ed. Kallianpur, J. et al., North-Holland, Amsterdam.Google Scholar
Watson, G. S. (1982) The Fisher distribution.Google Scholar
Wintner, A. (1947) On the shape of the angular case of Cauchy's distribution curves. Ann. Math. Statist. 18, 589593.Google Scholar
Yor, M. (1979) Loi de l'indice du lacet brownien et distribution de Hartman–Watson. Z. Wahrscheinlichkeitsth. 53, 7195.Google Scholar