Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T14:34:11.378Z Has data issue: false hasContentIssue false

Distributional Study of De Finetti's Dividend Problem for a General Lévy Insurance Risk Process

Published online by Cambridge University Press:  14 July 2016

A. E. Kyprianou*
Affiliation:
The University of Bath
Z. Palmowski*
Affiliation:
Utrecht University and Wrocław University
*
Postal address: Department of Mathematical Sciences, The University of Bath, Claverton Down, Bath BA2 7AY, UK. Email address: [email protected]
∗∗ Postal address: Mathematical Institute, University of Wrocław, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland. Email address: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We provide a distributional study of the solution to the classical control problem due to De Finetti (1957), Gerber (1969), Azcue and Muler (2005), and Avram et al. (2007), which concerns the optimal payment of dividends from an insurance risk process prior to ruin. Specifically, we build on recent work in the actuarial literature concerning calculations of the nth moment of the net present value of dividends paid out in the optimal strategy as well as the moments of the deficit at ruin and the Laplace transform of the red period. The calculations we present go much further than the existing literature, in that our calculations are valid for a general spectrally negative Lévy process as opposed to the classical Cramér–Lundberg process with exponentially distributed jumps. Moreover, the technique we use appeals principally to excursion theory rather than integro-differential equations and, for the case of the nth moment of the net present value of dividends, makes a new link with the distribution of integrated exponential subordinators.

Type
Research Article
Copyright
Copyright © Applied Probability Trust 2007 

References

Albrecher, H., Claramunt, M. M. and Mármol, M. (2005). On the distribution of dividend payments in a Sparre Andersen model with generalized Erlang(n) interclaim times. Insurance Math. Econom. 37, 324334.Google Scholar
Asmussen, S., Avram, F. and Pistorius, M. (2004). Russian and American put options under exponential phase-type Lévy models. Stoch. Process. Appl. 109, 79111.CrossRefGoogle Scholar
Avram, F., Kyprianou, A. E. and Pistorius, M. R. (2004). Exit problems for spectrally negative Lévy processes and applications to (Canadized) Russian options. Ann. Appl. Prob. 14, 215238.Google Scholar
Avram, F., Palmowski, Z. and Pistorius, M. R. (2007). On the optimal dividend problem for a spectrally negative Lévy process. Ann. Appl. Prob. 17, 156180.CrossRefGoogle Scholar
Azcue, P. and Muler, N. (2005). Optimal reinsurance and dividend distribution policies in the Cramér–Lundberg model. Math. Finance 15, 261308.Google Scholar
Bertoin, J. (1996). Lévy Processes. Cambridge University Press.Google Scholar
Bertoin, J. and Yor, M. (2005). Exponential functionals of Lévy processes. Prob. Surveys 2, 191212.Google Scholar
Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1987). Regular Variation. Cambridge University Press.Google Scholar
De Finetti, B. (1957). Su un'impostazion alternativa dell teoria collecttiva del rischio. Trans. XVth Internat. Congr. Actuaries 2, 433443.Google Scholar
Dickson, D. C. M. and Dos Reis, A. E. (1996). On the distribution of the duration of negative surplus. Scand. Actuarial J. 2, 148164.Google Scholar
Dickson, D. C. M. and Waters, H. R. (2004). Some optimal dividends problems. ASTIN Bull. 34, 4974.Google Scholar
Doney, R. A. (1995). Spitzer's condition and ladder variables in random walks. Prob. Theory Relat. Fields 101, 577580.Google Scholar
Doney, R. A. and Kyprianou, A. E. (2006). Overshoots and undershoots of Lévy processes. Ann. Appl. Prob. 16, 91106.Google Scholar
Dos Reis, A. E. (1993). How long is the surplus below zero? Insurance Math. Econom. 12, 2338.Google Scholar
Furrer, H. (1998). Risk processes perturbed by α-stable Lévy motion. Scand. Actuarial J. 1998, 5974.Google Scholar
Gerber, H. U. (1969). Entscheidungskriterien für den zusammengesetzten Poisson-Prozess. Schweiz. Verein. Versicherungsmath. Mitt. 69, 185228.Google Scholar
Huzak, M., Perman, M., Šikić, H. and Vondraček, Z. (2004a). Ruin probabilities and decompositions for general perturbed risk processes. Ann. Appl. Prob. 14, 13781397.Google Scholar
Huzak, M., Perman, M., Šikić, H. and Vondraček, Z. (2004b). Ruin probabilities for competing claim processes. J. Appl. Prob. 41, 679690.CrossRefGoogle Scholar
Klüppelberg, C. and Kyprianou, A. E. (2006). On extreme ruinous behaviour of Lévy insurance risk processes. J. Appl. Prob. 43, 594598.CrossRefGoogle Scholar
Klüppelberg, C., Kyprianou, A. E. and Maller, R. A. (2004). Ruin probabilities and overshoots for general Lévy insurance risk processes. Ann. Appl. Prob. 14, 17661801.CrossRefGoogle Scholar
Kűchler, U. and Sørensen, M. (1997) Exponential Families of Stochastic Processes. Springer, New York.Google Scholar
Kyprianou, A. E. (2006). Introductory Lectures on Fluctuations of Lévy Processes with Applications. Springer, Berlin.Google Scholar
Kyprianou, A. E. and Palmowski, Z. (2005). A martingale review of some fluctuation theory for spectrally negative Lévy processes. In Séminaire de Probabilités XXXVIII (Lecture Notes Math. 1857), Springer, Berlin, pp. 1629.Google Scholar
Lambert, A. (2000). Completely asymmetric Lévy processes confined in a finite interval. Ann. Inst. H. Poincaré. Prob. Statist. 36, 251274.CrossRefGoogle Scholar
Lin, X. S. and Willmot, G. E. (2000). The moments of the time of ruin, the surplus before ruin, and the deficit at ruin. Insurance Math. Econom. 27, 1944.Google Scholar
Lin, X. S., Willmot, G. E. and Drekic, S. (2003). The classical risk model with a constant dividend barrier: analysis of the Gerber–Shiu discounted penalty function. Insurance Math. Econom. 33, 551566.Google Scholar
Renaud, J. and Zhou, X. (2007). Distribution of the present value of dividend payments in a Lévy risk model. J. Appl. Prob. 44, 420427.Google Scholar
Rivero, V. (2003). A law of iterated logarithm for increasing self-similar Markov processes. Stoch. Stoch. Reports 75, 443472.Google Scholar
Rogers, L. C. G. (2000). Evaluating first-passage probabilities for spectrally one-sided Lévy processes. J. Appl. Prob. 37, 11731180.Google Scholar
Surya, B. A. (2006). Evaluating scale functions of spectrally negative Lévy processes. Preprint.Google Scholar