Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-17T01:04:22.105Z Has data issue: false hasContentIssue false

Dependent thinning of point processes

Published online by Cambridge University Press:  14 July 2016

Valerie Isham*
Affiliation:
University College London
*
Postal address: Department of Statistical Science, University College London, Gower St., London WCIE 6BT, U.K.

Abstract

A point process, N, on the real line, is thinned using a k -dependent Markov sequence of binary variables, and is rescaled. Second-order properties of the thinned process are described when k = 1. For general k, convergence to a compound Poisson process is demonstrated.

Type
Research Papers
Copyright
Copyright © Applied Probability Trust 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Belyaev, Yu. K. (1963) Limit theorems for dissipative flows. Theory Prob. Appl. 8, 165173.Google Scholar
Goldman, J. R. (1967) Stochastic point processes: limit theorems. Ann. Math. Statist. 38, 771779.Google Scholar
Kallenberg, O. (1975) Limits of compound and thinned point processes, J. Appl. Prob. 12, 269278.Google Scholar
Nawrotski, K. (1962) Ein Grenzwertsatz für homogene züfallige Punktfolgen (Verall-gemeinerung eines Satzes von A. Rényi). Math. Nachr. 24, 201217.Google Scholar
Papangelou, F. (1972) Integrability of expected increments of point processes and a related random change of scale. Trans. Amer. Math. Soc. 165, 483506.Google Scholar
Renyi, A. (1956) A characterisation of Poisson processes (in Hungarian). Magyar Tud. Akad. Mat. Kutató Int. Közl. 1, 519527. (Translated in Selected papers of Alfréd Rényi Vol. 1, ed. Turán, Pál, Akademiai Kiadó, Budapest (1976), 622–628.Google Scholar
Rudemo, M. (1973) On a random transformation of a point process to a Poisson process. In Mathematics and Statistics: Essays in honour of Harald Bergström, ed. Jagers, P. and Råde, L., Göteborg, pp. 7985.Google Scholar
Westcott, M. (1976) Simple proof of a result on thinned point processes. Ann. Prob. 4, 8990.Google Scholar