Published online by Cambridge University Press: 14 July 2016
A road traffic model with restricted passing, formulated by Newell (1966), is described by conditional cluster point processes and analytically handled by generating functionals of point processes.
The traffic distributions in either space or time are in equilibrium, if the fast cars form a Poisson process with constant intensity combined with Poisson-distributed queues behind the slow cars (Brill (1971)). It is shown that this state of equilibrium is stable, which means that this state will be reached asymptotically for general initial traffic distributions. Furthermore the queues behind the slow cars dissolve asymptotically like independent Poisson processes with diminishing rate, also independent of the process of non-queuing cars. To get these results limit theorems for conditional cluster point processes are formulated.