Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-27T20:45:17.814Z Has data issue: false hasContentIssue false

The Containment Condition and Adapfail Algorithms

Published online by Cambridge University Press:  30 January 2018

Krzysztof Łatuszyński*
Affiliation:
University of Warwick
Jeffrey S. Rosenthal*
Affiliation:
University of Toronto
*
Postal address: Department of Statistics, University of Warwick, Coventry CV4 7AL, UK. Email address: [email protected]
∗∗ Postal address: Department of Statistics, University of Toronto, Toronto, Ontario M5S 3G3, Canada. Email address: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This short note investigates convergence of adaptive Markov chain Monte Carlo algorithms, i.e. algorithms which modify the Markov chain update probabilities on the fly. We focus on the containment condition introduced Roberts and Rosenthal (2007). We show that if the containment condition is not satisfied, then the algorithm will perform very poorly. Specifically, with positive probability, the adaptive algorithm will be asymptotically less efficient then any nonadaptive ergodic MCMC algorithm. We call such algorithms AdapFail, and conclude that they should not be used.

Type
Research Article
Copyright
© Applied Probability Trust 

References

Andrieu, C. and Thoms, J. (2008). A tutorial on adaptive MCMC. Statist. Comput. 18, 343373.Google Scholar
Atchadé, Y. F. and Rosenthal, J. S. (2005). On adaptive Markov chain Monte Carlo algorithms. Bernoulli 11, 815828.Google Scholar
Bai, Y., Roberts, G. O. and Rosenthal, J. S. (2011). On the containment condition for adaptive Markov chain Monte Carlo algorithms. Adv. Appl. Statist. 21, 154.Google Scholar
Fort, G., Moulines, E. and Priouret, P. (2011). Convergence of adaptive and interacting Markov chain Monte Carlo algorithms. Ann. Statist. 39, 32623289.Google Scholar
Geyer, C. J. (1992). Practical Markov chain Monte Carlo. Statist. Sci. 7, 473483.Google Scholar
Gilks, W. R., Roberts, G. O. and Sahu, S. K. (1998). Adaptive Markov chain Monte Carlo through regeneration. J. Amer. Statist. Assoc. 93, 10451054.CrossRefGoogle Scholar
Giordani, P. and Kohn, R. (2008). Efficient Bayesian inference for multiple change-point and mixture innovation models. J. Business Econom. Statist. 26, 6677.CrossRefGoogle Scholar
Griffin, J. E., Łatuszyński, K. and Steel, M. F. J. (2014). Individual adaptation: an adaptive MCMC scheme for variable selection problems. Submitted.Google Scholar
Haario, H., Saksman, E. and Tamminen, J. (2001). An adaptive Metropolis algorithm. Bernoulli 7, 223242.Google Scholar
Łatuszyński, K. (2012). A path stability condition for adaptive MCMC. In preparation.Google Scholar
Łatuszyński, K., Roberts, G. O. and Rosenthal, J. S. (2013). {Adaptive Gibbs samplers and related MCMC methods}. Ann. Appl. Prob. 23, 6698.CrossRefGoogle Scholar
Meyn, S. and Tweedie, R. L. (2009). Markov Chains and Stochastic Stability, 2nd edn. Cambridge University Press.Google Scholar
Mira, A. and Geyer, C. J. (1999). Ordering Monte Carlo Markov chains. Tech. Rep. No. 632, School of Statistics, U. of Minnesota, April 1999. Available at: http://eco.uninsubria.it/webdocenti/amira/papers.html Google Scholar
Richardson, S., Bottolo, L. and Rosenthal, J. S. (2011). Bayesian models for sparse regression analysis of high dimensional data. In Bayesian Statistics 9, Oxford University Press, pp. 539568.Google Scholar
Roberts, G. O. and Rosenthal, J. S. (1997). Geometric ergodicity and hybrid Markov chains. Electron. Commun. Prob. 2, 1325.CrossRefGoogle Scholar
Roberts, G. O. and Rosenthal, J. S. (2001). Optimal scaling for various Metropolis–Hastings algorithms. Statist. Sci. 16, 351367.CrossRefGoogle Scholar
Roberts, G. O. and Rosenthal, J. S. (2004). General state space Markov chains and MCMC algorithms. Prob. Surveys 1, 2071.Google Scholar
Roberts, G. O. and Rosenthal, J. S. (2007). Coupling and ergodicity of adaptive Markov chain Monte Carlo algorithms. J. Appl. Prob. 44, 458475.Google Scholar
Roberts, G. O. and Rosenthal, J. S. (2009). Examples of adaptive MCMC. J. Comput. Graphical Statist. 18, 349367.Google Scholar
Roberts, G. O. and Rosenthal, J. S. (2013). A note on formal constructions of sequential conditional couplings. Statist. Prob. Lett. 83, 20732076.Google Scholar
Roberts, G. O., Gelman, A. and Gilks, W. R. (1997). Weak convergence and optimal scaling of random walk Metropolis algorithms. Ann. Appl. Prob. 7, 110120.Google Scholar
Solonen, A. et al. (2012). Efficient MCMC for climate model parameter estimation: parallel adaptive chains and early rejection. Bayesian Anal. 7, 715736.Google Scholar