Published online by Cambridge University Press: 04 April 2017
In this paper we deal with an optimal stopping problem whose objective is to maximize the probability of selecting k out of the last ℓ successes, given a sequence of independent Bernoulli trials of length N, where k and ℓ are predetermined integers satisfying 1≤k≤ℓ<N. This problem includes some odds problems as special cases, e.g. Bruss’ odds problem, Bruss and Paindaveine’s problem of selecting the last ℓ successes, and Tamaki’s multiplicative odds problem for stopping at any of the last m successes. We show that an optimal stopping rule is obtained by a threshold strategy. We also present the tight lower bound and an asymptotic lower bound for the probability of a win. Interestingly, our asymptotic lower bound is attained by using a variation of the well-known secretary problem, which is a special case of the odds problem. Our approach is based on the application of Newton’s inequalities and optimization technique, which gives a unified view to the previous works.