Published online by Cambridge University Press: 14 July 2016
A simple birth-death model of particle fluctuations is studied where at each discrete time a birth and/or death may occur. We show that if the probability of a birth does not depend on the number of particles present and if births and deaths are independent, then the times between successive deaths are independent geometrically distributed random variables, which is false in the general case. Since the above properties of the times between successive neuron firings have been observed in nerve cells, the model proposed in [2] obtains added credence.