Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-13T08:49:13.040Z Has data issue: false hasContentIssue false

Berry–Esseen Bounds and the Law of the Iterated Logarithm for Estimators of Parameters in an Ornstein–Uhlenbeck Process with Linear Drift

Published online by Cambridge University Press:  30 January 2018

Hui Jiang*
Affiliation:
Nanjing University of Aeronautics and Astronautics
*
Postal address: School of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China. Email address: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the asymptotic behaviors of estimators of the parameters in an Ornstein–Uhlenbeck process with linear drift, such as the law of the iterated logarithm (LIL) and Berry–Esseen bounds. As an application of the Berry–Esseen bounds, the precise rates in the LIL for the estimators are obtained.

Type
Research Article
Copyright
© Applied Probability Trust 

Footnotes

Research supported by the National Natural Science Foundation of China under grant 11101210 and by the Fundamental

Research Funds for Nanjing University of Aeronautics and Astronautics under grant NS2010189.

References

Bercu, B. and Rouault, A. (2002). Sharp large deviations for the Ornstein-Uhlenbeck process. Theory Prob. Appl. 46, 119.CrossRefGoogle Scholar
Bishwal, J. P. N. (2000). Sharp Berry-Esseen bound for the maximum likelihood estimator in the Ornstein-Uhlenbeck process. Sankhyā A 62, 110.Google Scholar
Bishwal, J. P. N. (2007). Parameter Estimation in Stochastic Differential Equations. Springer, Berlin.Google Scholar
Chang, M. N. and Rao, P. V. (1989). Berry-Esseen bound for the Kaplan-Meier estimator. Commun. Statist. Theory Meth. 18, 46474664.CrossRefGoogle Scholar
Florens-Landais, D. and Pham, H. (1999). Large deviations in estimation of an Ornstein-Uhlenbeck model. J. Appl. Prob. 36, 6077.CrossRefGoogle Scholar
Gao, F. Q. and Jiang, H. (2009). Deviation inequalities and moderate deviations for estimators of parameters in an Ornstein-Uhlenbeck process with linear drift. Electron. Commun. Prob. 14, 210223.CrossRefGoogle Scholar
Gao, F. Q., Jiang, H. and Wang, B. B. (2010). Moderate deviations for parameter estimators in fractional Ornstein-Uhlenbeck process. Acta Math. Sci. 30, 11251133.Google Scholar
Gourcy, M. and Wu, L. M. (2006). Logarithmic Sobolev inequalities of diffusions for the L 2 metric. Potential Anal. 25, 77102.CrossRefGoogle Scholar
Guillin, A. and Liptser, R. (2006). Examples of moderate deviation principles for diffusion processes. Discrete Continuous Dynamical Systems B 6, 803828.CrossRefGoogle Scholar
Gut, A. and Spătaru, A. (2000). Precise asymptotics in the Baum-Katz and Davis law of large numbers. J. Math. Anal. Appl. 248, 233246.CrossRefGoogle Scholar
Gut, A. and Spătaru, A. (2000). Precise asymptotics in the law of the iterated logarithm. Ann. Prob. 28, 18701883.CrossRefGoogle Scholar
Haeusler, E. (1988). On the rate of convergence in the central limit theorem for martingales with discrete and continuous time. Ann. Prob. 16, 275299.Google Scholar
Kutoyants, Y. A. (2003). Statistical Inference for Ergodic Diffusion Processes. Springer, London.Google Scholar
Lepingle, L. (1978). Sur le comportement asymptotique des martingales locales. In Séminaire de Probabilités XII (Lecture Notes Math. 649), Springer, pp. 148161.CrossRefGoogle Scholar
Pang, T.-X. and Lin, Z.-Y. (2005). Precise rates in the law of logarithm for i.i.d. random variables. Comput. Math. Appl. 49, 9971010.CrossRefGoogle Scholar
Pang, T.-X., Zhang, L.-X. and Wang, J.-F. (2008). Precise asymptotics in the self-normalized law of the iterated logarithm. J. Math. Anal. Appl. 340, 12491262.CrossRefGoogle Scholar
Prakasa Rao, B. L. S. (1999). Statistical Inference for Diffusion Type Processes. Oxford University Press, New York.Google Scholar