Article contents
Asymptotic Properties of a Leader Election Algorithm
Published online by Cambridge University Press: 14 July 2016
Abstract
We consider a serialized coin-tossing leader election algorithm that proceeds in rounds until a winner is chosen, or all contestants are eliminated. The analysis allows for either biased or fair coins. We find the exact distribution for the duration of any fixed contestant; asymptotically, it turns out to be a geometric distribution. Rice's method (an analytic technique) shows that the moments of the duration contain oscillations, which we give explicitly for the mean and variance. We also use convergence in the Wasserstein metric space to show that the distribution of the total number of coin flips (among all participants), suitably normalized, approaches a normal limiting random variable.
Keywords
MSC classification
- Type
- Research Article
- Information
- Copyright
- Copyright © Applied Probability Trust 2011
Footnotes
Research supported by NSF Science & Technology Center grant CCF-0939370.
References
- 6
- Cited by