Published online by Cambridge University Press: 30 March 2016
We survey some aspects of the classical prediction theory for stationary processes, in discrete time in Section 1, turning in Section 2 to continuous time, with particular reference to reproducing-kernel Hilbert spaces and the sampling theorem. We discuss the discrete-continuous theories of ARMA-CARMA, GARCH-COGARCH, and OPUC-COPUC in Section 3. We compare the various models treated in Section 4 by how well they model volatility, in particular volatility clustering. We discuss the infinite-dimensional case in Section 5, and turn briefly to applications in Section 6.