Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-24T02:57:20.971Z Has data issue: false hasContentIssue false

A survey of some recent Czechoslovak work in automatic statistical process control

Published online by Cambridge University Press:  14 July 2016

A. H. Žaludová
Affiliation:
National Research Institute for Machine Design, Prague
Z. Režný
Affiliation:
National Research Institute for Machine Design, Prague
M. Ullrich
Affiliation:
Czechoslovak Academy of Sciences Institute of Information Theory and Automation, Prague

Abstract

The article first reviews briefly the field of statistical process control and its relation to automatic process control. Some recent results obtained by various workers in Czechoslovakia in the field of statistical aspects of automatic process control are then presented.

Type
Research Papers
Copyright
Copyright © Sheffield: Applied Probability Trust 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

5. References

Barnard, G. A. (1959) Control charts and stochastic processes. J. R. Statist. Soc. B. 21, 239257.Google Scholar
Bellman, R. (1960) Adaptive Control Processes–A Guided Tour. Princeton Univ. Press.Google Scholar
Bishop, A. B. (1960) Quality control in the automatic factory. Industr. Qual. Contr. 16, No. 9, March, 512.Google Scholar
Blackwell, D. (1965) Discounted dynamic programming. Ann. Math. Statist. 36, 226235.CrossRefGoogle Scholar
Box, G. E. P. and Jenkins, G. M. (1962) Some statistical aspects of optimisation and control. J. R. Statist. Soc. B. 24, 297331.Google Scholar
Derman, C. (1963) On sequential decisions and Markov chains. Management Sci. 9, 1, 1624.Google Scholar
Duncan, A. J. (1956) The economic design of X charts used to maintain current control of process. J. Amer. Statist. Ass. 51, 228242.Google Scholar
Dynkin, E. B. (1965) Controlled stochastic processes–discrete parameter (in Russian). Teor. Veroyat. Primen. 10, 1, 318.Google Scholar
Feldbaum, A. A. (1963) Foundations of the Theory of Optimal Automatic Systems (in Russian). Fizmatgiz, Moscow.Google Scholar
Girshick, M. A. and Rubin, H. (1952) A Bayes approach to a quality control model. Ann. Math. Statist. 23, 114125.Google Scholar
Hanš, O., Krepela, J. and Ullrich, M. (1965) Optimal control of a certain type of production process. Berlin Colloq. on Statist. Qual. Contr. Google Scholar
Hanš, O. and Ullrich, M. (1966) Statistical decision procedures for process control. Proc. EOQC Conf., Stockholm, 103108.Google Scholar
Hrabák, J. (1960) Automatische statistische Qualitäts-Kontrolle beim spitzenlosen Schleifen. Fertigungstechnik und Betrieb 9, 509511.Google Scholar
Hrabák, J. (1964) Réglage statistique automatique. Rev. Statist. Appl. 12, 3, 105110.Google Scholar
Huggins, P. (1954) Statistical computers as applied to industrial control. J. Brit. Inst. of Radio Eng., July, 309321.CrossRefGoogle Scholar
Krepela, J. and Ullrich, M. (1964) Statistische Regelung der Produktionsbedingungen vom Standpunkt der Automatisierung. Wissensch. Zeitschrift der Techn. Hochsch. Magdeburg, Heft 3/4.Google Scholar
Kolemayev, V. A. (1964) Some applications of the theory of random processes to the control of industrial processes. Avtomat. i telemekh. 25, No. 9, 12941301 (in Russian)–English translation Automat. Remote Control. Google Scholar
Kubát, L. (1962) Model of a simple system controlled on the basis of statistical parameters (in Czech). Proc. Conf. on Appl. Math. Statist., Prague, 177186.Google Scholar
Laning, J. H. and Battin, R. H. (1956) Random Processes in Automatic Control. McGraw Hill, New York.Google Scholar
Lieberman, G. J. (1965) Statistical process control and the impact of automatic process control. Technometrics 7, 3, 283292.Google Scholar
Mohan, R., Bhattacharji, A. K. and Mishra, R. (1964) Estimating machining errors in set-ups with automatic resetting. Technometrics 6, 4, 323438.Google Scholar
Perelman, J. J. (1961) Statistical automata of relay type and some methods for their investigation. Automat, i telemekh. 22, No. 6, 765779 (in Russian)–Eng. transl. Automat. Remote Control. Google Scholar
Prouza, L. (1960) Contribution to the linear theory of automatic setters (in Russian). Aplik. Mat. 5, 3, 196201.Google Scholar
Prouza, L. (1962) On the linear theory of automatic machine-setting (in Czech). Proc. Conf. on Appl. Math. Statist., Prague, 139–147. French translation Revue Statist. Appl. , 13, 2, 95100.Google Scholar
Prouza, L. (1965) A linear automatic setter with incomplete information (in Czech). Proc. Sec. Conf. on Appl. Math. Statist., Prague. 6069.Google Scholar
Pugatchev, V. S. (1960) Theory of Random Functions and its Application to Problems of Automatic Control (in Russian). Fizmatgiz, Moscow.Google Scholar
Ragazzini, J. R. and Franklin, G. F. (1958) Sampled-data Control Systems. McGraw Hill, New York.Google Scholar
Režný, Z. (1959) Group tests of statistical hypotheses on the basis of two control limits (in Czeh). Appl. Mat. 4, No. 4, 290302, Engl, transl, in Selected Transl. in Math. Statist. and Prob. 3, 277–289.Google Scholar
Režný, Z. (1961) Statistical control with constant magnitude of correction for the case of a one-sided drift of process level (in Czech). Appl. Mat., 6, 5, 379391.Google Scholar
Režný, Z. (1962) Intermittent statistical control with a discrete command signal (in Czech). Proc. Conf. on Appl. Math. Statist., Prague, 115125.Google Scholar
Režný, Z. (1964) Ein Problem der linearen Regulierung bei einer instationaren Störung von polynomischer Form. Proc. Colloq. on Ind. Appl. Math. Statist., Budapest.Google Scholar
Režný, Z. (1965) Group tests of statistical hypotheses on the basis of an arbitrary number of checking limits (in Czech). Proc. Sec. Conf. on Appl. Math. Statist. Prague, 108119.Google Scholar
Shewhart, W. (1931) Economic Control of Quality of Manufactured Product. D. Van Nostrand, Princeton.Google Scholar
Šefl, O. (1965) Some remarks on the efficiency of optimal and adaptive predictors (in Czech). Proc. Sec. Conf. on Appl. Math. Statist., Prague, 7092.Google Scholar
Solodovnikov, V. V. (1960) Statistical Dynamics of Linear Automatic Control Systems (in Russian). Fizmatgiz, Moscow.Google Scholar
Shiryayev, A. N. (1963) On discovering disorder in a manufacturing process. Part 1 (in Russian). Teor. Veroyat. Primen, 8, 3, 264281.Google Scholar
Špacek, A. (1949) Note on successive cumulative sums of independent random variables (in Czech). Cas. pest. mat. 74, 4145.Google Scholar
Špacek, A. (1957) An elementary experience problem. Trans. First Prague Conf. on Inf. Theory, Stat. Dec. Func, and Rand. Proc., 253258.Google Scholar
Špacek, A. (1965) On the use of statistical methods in automatic control theory (in Czech). Kybernetika, 1, 5, 379398.Google Scholar
Stevens, W. L. (1948) Control by gauging. J. R. Statist. Soc. B 10, 5498.Google Scholar
Ullrich, M. (1963) Optimum control of some stochastic system. VIIIth Conf. ETAN, Zagreb.Google Scholar
Ullrich, M. (1965) A note on adaptive control systems. Trans. 4th Prague Conf. on Inf. Theory, Stat. Dec. Func. and Rand. Proc., 605610.Google Scholar
Weiler, H. (1952) On the most economical sample size for controlling the mean of a population. Ann. Math. Statist., 23, 247254.CrossRefGoogle Scholar
Weiler, H. (1953) The use of runs to control the mean in quality control. J. Amer. Statist. Ass., 48, 264, 816825.Google Scholar
Weiler, H. (1954) A new type of control chart limits for means, ranges and sequential runs. J. Amer. Statist. Ass. 49, 298314.Google Scholar