Article contents
Random bisection and evolutionary walks
Published online by Cambridge University Press: 14 July 2016
Abstract
As models for molecular evolution, immune response, and local search algorithms, various authors have used a stochastic process called the evolutionary walk, which goes as follows. Assign a random number to each vertex of the infinite N-ary tree, and start with a particle on the root. A step of the process consists of searching for a child with a higher number and moving the particle there; if no such child exists, the process stops. The average number of steps in this process is asymptotic, as N → ∞, to log N, a result first proved by Macken and Perelson. This paper relates the evolutionary walk to a process called random bisection, familiar from combinatorics and number theory, which can be thought of as a transformed Poisson process. We first give a thorough treatment of the exact walk length, computing its distribution, moments and moment generating function. Next we show that the walk length is asymptotically normally distributed. We also treat it as a mixture of Poisson random variables and compute the asymptotic distribution of the Poisson parameter. Finally, we show that in an evolutionary walk with uniform vertex numbers, the ‘jumps’, ordered by size, have the same asymptotic distribution as the normalized cycle lengths in a random permutation.
MSC classification
- Type
- Research Papers
- Information
- Copyright
- Copyright © Applied Probability Trust 2001
References
- 1
- Cited by