Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-16T15:30:05.300Z Has data issue: false hasContentIssue false

A prediction problem of the branching random walk

Published online by Cambridge University Press:  14 July 2016

P. Révész*
Affiliation:
Technische Universität Wien, Institut für Statistik und Wahrscheinlichkeitstheorie, Wiedner Hauptstasse 8-10/107, Wien, A-1040 Austria. Email address: [email protected]

Abstract

The location of the ‘favourite’ point at time T (T = 1, 2,…) of a supercritical branching random walk at ℤd is investigated.

Type
Part 1. Branching processes
Copyright
Copyright © Applied Probability Trust 2004 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Chen, X. (2001). Exact convergence rates for the distribution of particles in branching random walks. Ann. Appl. Prob. 11, 12421262.Google Scholar
[2] Harris, T. E. (1963). The Theory of Branching Processes. Springer, Berlin.CrossRefGoogle Scholar
[3] Heyde, C. C. (1971). Some almost sure convergence theorems for branching processes. Z. Wahrscheinlichkeitsth. 20, 189192.Google Scholar
[4] Heyde, C. C. (1971). Some central limit analogues for super-critical Galton-Watson processes. J. Appl. Prob. 8, 5259.Google Scholar
[5] Heyde, C. C. and Brown, M. M. (1971). An invariance principle and some convergence rate results for branching processes. Z. Wahrscheinlichkeitsth. 20, 271278.Google Scholar
[6] Revesz, P. (1994). Random Walks of Infinitely Many Particles. World Scientific, Singapore.CrossRefGoogle Scholar