Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T04:17:51.009Z Has data issue: false hasContentIssue false

Persistence of a critical super-2 process

Published online by Cambridge University Press:  14 July 2016

Luis G. Gorostiza*
Affiliation:
Centro de Investigación y de Estudios Avanzados, México DF
Kenneth J. Hochberg*
Affiliation:
Bar-Ilan University
Anton Wakolbinger*
Affiliation:
Johann-Wolfgang Goethe-Universität, Frankfurt am Main
*
Postal address: Departamento de Matemáticas, Centro de Investigación y de Estudios Avanzados, A.P. 14–740, 07300 México DF, México.
∗∗Postal address: Department of Mathematics and Computer Science, Bar-Ilan University, 52900 Ramat-Gan, Israel.
∗∗∗Postal address: Fachbereich Mathematik, Johann Wolfgang Goethe-Universität, D-60054 Frankfurt am Main, Germany.

Abstract

It is shown that the critical two-level (2, d, 1, 1)-superprocess is persistent in dimensions d greater than 4. This complements the extinction result of Wu (1994) and implies that the critical dimension is 4.

Type
Short Communications
Copyright
Copyright © Applied Probability Trust 1995 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Billingsley, P. (1968) Convergence of Probability Measures. Wiley, New York.Google Scholar
[2] Dawson, D. A. (1992) Infinitely divisible random measures and superprocesses. In Stochastic Analysis and Related Topics, Progr. Prob. 32, pp. 1129. Birkhäuser, Basel.Google Scholar
[3] Dawson, D. A. (1993) Measure-valued Markov processes. In Ecole d'Eté de Probabilités de Saint Flour XXI-1991, pp. 1260. Lecture Notes in Mathematics 1541, Springer-Verlag, Berlin.Google Scholar
[4] Dawson, D. A. and Hochberg, K. J. (1991) A multilevel branching model. Adv. Appl. Prob. 23, 701715.CrossRefGoogle Scholar
[5] Dawson, D. A., Hochberg, K. J. and Vinogradov, V. (1994) On path properties of super-2 processes I. In Measure-Valued Processes, Stochastic Partial Differential Equations and Interacting Systems. CRM Proceedings and Lecture Notes 5, pp. 6982. American Mathematical Society, Providence, RI.Google Scholar
[6] Dawson, D. A., Hochberg, K. J. and Vinogradov, V. (1994) On path properties of super-2 processes II. In Proceedings of Symposia in Pure Mathematics 57, pp. 385403. American Mathematical Society, Providence, RI.Google Scholar
[7] Dawson, D. A., Hochberg, K. J. and Wu, Y. (1990) Multilevel branching systems. In White Noise Analysis: Mathematics and Applications, pp. 93107. World Scientific, Singapore.Google Scholar
[8] Dawson, D. A. and Perkins, E. A. (1991) Historical Processes. Memoirs of the American Mathematical Society 454, Providence, RI.Google Scholar
[9] Dynkin, E. B. (1989) Three classes of infinite dimensional diffusions. J. Functional Anal. 56, 75110.CrossRefGoogle Scholar
[10] Gorostiza, L. G. and Wakolbinger, A. (1991) Persistence criteria for a class of critical branching particle systems in continuous time. Ann. Prob. 19, 266288.Google Scholar
[11] Gorostiza, L. G. and Wakolbinger, A. (1994) Long time behavior of critical branching particle systems and applications. In Measure-Valued Processes, Stochastic Partial Differential Equations and Interacting Systems. CRM Proceedings and Lecture Notes 5, pp. 119137. American Mathematical Society, Providence, RI.Google Scholar
[12] Gorostiza, L. G., Roelly, S. and Wakolbinger, A. (1990) Sur la persistence du processes de Dawson-Watanabe stable. L'interversion de la limite en temps et de la renormalisation. In Séminaire de Probabilités XXIV, pp. 275281. Lecture Notes in Mathematics 1426, Springer-Verlag, Berlin.Google Scholar
[13] Hochberg, K. J. (1994) Hierarchically structured branching populations with spatial motion. Rocky Mountain J. Math., To appear.Google Scholar
[14] Kallenberg, O. (1983) Random Measures, 3rd edn. Akademie-Verlag, Berlin; Academic Press, New York.Google Scholar
[15] Wu, Y. (1992) Dynamic Particle Systems and Multilevel Measure Branching Processes. , Carleton University.Google Scholar
[16] Wu, Y. (1993) A multilevel birth-death particle system and its continuous diffusion. Adv. Appl. Prob. 25, 549569.Google Scholar
[17] Wu, Y. (1994) Asymptotic behaviour of the two level measure branching process. Ann. Prob. 22, 854874.Google Scholar