Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T08:16:40.020Z Has data issue: false hasContentIssue false

On two marked point processes

Published online by Cambridge University Press:  14 July 2016

Ludger Rüschendorf*
Affiliation:
Technische Hochschule, Aachen

Abstract

Two examples for marked point processes are discussed and some characteristic parameters of these models are calculated. Both examples are in some way modifications of the counter models which are well known and treated in several textbooks.

Type
Research Papers
Copyright
Copyright © Applied Probability Trust 1977 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Matthes, K. (1964) Stationäre zufällige Punktfolgen I. Jahrb. deut. Math. Verein. 66, 6679.Google Scholar
Prabhu, N. U. (1965) Stochastic Processes. Macmillan, New York.Google Scholar
Ten Hoopen, M. and Reuver, H. A. (1967) Interaction between two independent recurrent time series. Inf. and Control 10, 144158.Google Scholar
Bartlett, M. S. (1967) The spectral analysis of line processes. Proc. 5th Berkeley Symp. Math. Statist. Prob. 3, 135152.Google Scholar
Coleman, R. and Gastwirth, J. L. (1969) Some models for interaction of renewal processes related to neuronal firing. J. Appl. Prob. 6, 3858.Google Scholar
Vere-Jones, D. (1970) Stochastic models for earthquake occurrences. J. R. Statist. Soc. B 32, 162.Google Scholar
Lawrance, A. J. (1970) Selective interaction of a Poisson and renewal process: First-order stationary point results. J. Appl. Prob. 7, 359372.Google Scholar
Daley, D. J. and Vere-Jones, D. (1972) A summary of the theory of point processes. In Stochastic Point Processes: Statistical Analysis, Theory and Applications, ed. Lewis, P. A. W., Wiley-Interscience, New York, 299383.Google Scholar
Cox, D. R. and Lewis, P. A. W. (1972) Multivariate point processes. Proc. 6th Berkeley Symp. Math. Statist. Prob. 3, 401448.Google Scholar
Hilico, D. (1973) Processus ponctuels marqués stationnaires. Application a l'interaction sélective de deux processus ponctuels stationnaires. Ann. Inst. H. Poincaré B 9, 177193.Google Scholar
Fienberg, S. E. (1974) Stochastic models for single neuron firing trains; a survey. Biometrics 30, 399428.CrossRefGoogle ScholarPubMed