Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-16T17:28:33.224Z Has data issue: false hasContentIssue false

On the limit distribution of the number of cycles in a random graph

Published online by Cambridge University Press:  14 July 2016

Abstract

Let Γn(p) denote a random graph with n vertices in which any two vertices, independently of the others, are connected by an edge with probability p where . Denote by γ n(p) the total number of cycles in the graph Γn(p). The main object of this paper is to prove that the limit distribution of γ n(λ /n) is a Poisson distribution with expectation if n → ∞and 0 < λ< 1.

Type
Part 8 - Random Walks, Graphs and Networks
Copyright
Copyright © Applied Probability Trust 1988 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Austin, T. L., Fagen, R. E., Penney, W. F. and Riordan, J. (1959) The number of components in random linear graphs. Ann. Math. Statist. 30, 747754.CrossRefGoogle Scholar
[2] Bol, G. (1938) Über eine kombinatorische Frage. Abh. Math. Sem. Hans. Univ. 12, 242245.Google Scholar
[3] Bollobás, B. (1985) Random Graphs. Academic Press, London.Google Scholar
[4] Cayley, A. (1889) A theorem on trees. Quart. J. Pure Appl. Math. 23, 376378. [The Collected Mathematical Papers of Arthur Cayley, Vol. XIII. Cambridge University Press, 1897, pp. 26–28.] Google Scholar
[5] Clarke, L. E. (1958) On Cayley's formula for counting trees. J. London Math. Soc. 33, 471474.Google Scholar
[6] Dziobek, O. (1917) Eine Formel der Substitutionstheorie. Sitzungsber. Berl. Math. Gesellsch. 17, 6467.Google Scholar
[7] Erdélyi, A. (1938) Asymptotische Darstellung der Whittakerschen Funktionen für grosse reelle Werte des Arguments und der Parameter. Casopis Pest. Mat. a Fis. 67, 240248.Google Scholar
[8] Erdos, P. and Renyi, A. (1960) On the evolution of random graphs. Publ. Math. Inst. Hungar. Acad. Sci. 5, 1761.Google Scholar
[9] Euler, L. (1783) De serie Lambertina plurimisque eius insignibus proprietatibus. Acta Academiae Scientiarum Petropolitanae (1779) 2, 2951. [Leonhardi Euleri Opera Omnia. Ser. I. Vol. 6. B. G. Teubner, Leipzig, 1921, pp. 350–369.] Google Scholar
[10] Ford, G. W. and Uhlenbeck, G. E. (1957) Combinatorial problems in the theory of graphs. IV. Proc. Nat. Acad. Sci., U.S.A., 43, 163167.CrossRefGoogle ScholarPubMed
[11] Harris, B. (1960) Probability distributions related to random mappings. Ann. Math. Statist. 31, 10451062.Google Scholar
[12] Katz, L. (1955) Probability of indecomposability of a random mapping function. Ann. Math. Statist. 26, 512517.Google Scholar
[13] Kruskal, M. D. (1954) The expected number of components under a random mapping function. Amer. Math. Monthly 61, 392397.Google Scholar
[14] Moon, J. W. (1967) Various proofs of Cayley's formula for counting trees. In A Seminar on Graph theory, ed Harary, F. and Beineke, L. Holt, Rienhart and Winston, New York, pp. 7078.Google Scholar
[15] Moon, J. W. (1968) Another proof of Cayley's formula for counting trees. Amer. Math. Monthly 70, 846847.CrossRefGoogle Scholar
[16] Palmer, E. M. (1985) Graphical Evolution. An Introduction to the Theory of Random Graphs. Wiley, New York.Google Scholar
[17] Plancherel, M. and Rotach, W. (1929) Sur les valeurs asymptotiques de polynomes d'Hermite Hn (x) = (–1)n/dxn. Comment. Math. Helv. 1, 227254.Google Scholar
[18] Prüfer, H. (1918) Neuer Beweis eines Satzes über Permutationen. Arch. Math. Phys. 27, 142144.Google Scholar
[19] Rényi, A. (1959) Some remarks on the theory of trees. Publ. Math. Inst. Hungar. Acad. Sci. 4, 7385.Google Scholar
[20] Rényi, A. (1959) On connected graphs I. Publ. Math. Inst. Hungar. Acad. Sci. 4, 385388.Google Scholar
[21] Rényi, A. (1970) On the enumeration of trees. In Combinatorial Structures and their Applications, edited by Guy, R., Hanani, H., Sauer, N. and Schonheim, J. Gordon and Breach, New York, pp. 355360.Google Scholar
[22] Tricomi, F. G. (1949) Sul comportamento asintotico dell'n-esimo polinomio di Laguerra nell'intorno dell' ascissa 4n. Comment. Math. Helv. 22, 150167.Google Scholar
[23] Tricomi, F. G. (1949) Sul comportamento asintotico dei polinomi di Laguerra. Ann. Mat. Pura Appl. 28, 263289.Google Scholar
[24] Wright, E. M. (1977) The number of connected sparsely edged graphs. J. Graph Theory 1, 317330.Google Scholar