Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T06:35:14.111Z Has data issue: false hasContentIssue false

On the L2-convergence of a superadditive bisexual Galton-Watson branching process

Published online by Cambridge University Press:  14 July 2016

M. González*
Affiliation:
Universidad de Extremadura
M. Molina*
Affiliation:
Universidad de Extremadura
*
Postal address: Departamento de Matemáticas, Facultad de Ciencias, Universidad de Extremadura, 06071-Badajoz, Spain.
Postal address: Departamento de Matemáticas, Facultad de Ciencias, Universidad de Extremadura, 06071-Badajoz, Spain.

Abstract

In this paper the L2-convergence of a superadditive bisexual Galton–Watson branching process is studied. Necessary and sufficient conditions for the convergence of the suitably normed process are given. In the final section, a result about one of the most important bisexual models is proved.

Type
Research Papers
Copyright
Copyright © Applied Probability Trust 1997 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bagley, J. H. (1986) On the asymptotic properties of a supercritical bisexual branching process. J. Appl. Prob. 23, 820826.Google Scholar
Daley, D. J. (1968) Extinction condition for certain bisexual Galton-Watson branching processes. Z. Wahrscheinlichkeitsth. 9, 315322.CrossRefGoogle Scholar
Daley, D. J., Hull, D. M. and Taylor, J. M. (1986) Bisexual Galton-Watson branching processes with superadditive mating functions. J. Appl. Prob. 23, 585600.Google Scholar
González, M. and Molina, M. (1996) On the limit behaviour of a superadditive bisexual Galton-Watson branching process. J. Appl. Prob 33, 960967.CrossRefGoogle Scholar
Hille, E. and Phillips, R. S. (1957) Functional Analysis and Semi-Groups (Amer. Math. Soc. Colloq. XXXI). AMS, Providence, RI.Google Scholar
Klebaner, F. C. (1984) Geometric rate of growth in population-size-dependent branching processes. J. Appl. Prob. 21, 4049.CrossRefGoogle Scholar