Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T07:29:31.755Z Has data issue: false hasContentIssue false

On extreme-value theory in the presence of a trend

Published online by Cambridge University Press:  14 July 2016

L. De Haan*
Affiliation:
Erasmus University Rotterdam
E. Verkade*
Affiliation:
Erasmus University Rotterdam
*
Postal address: Faculteit der Economische Wetenschappen, Erasmus Universiteit Rotterdam, Postbus 1738, 3000 DR Rotterdam, The Netherlands.
Postal address: Faculteit der Economische Wetenschappen, Erasmus Universiteit Rotterdam, Postbus 1738, 3000 DR Rotterdam, The Netherlands.

Abstract

Extreme-value theory is considered in the context of independent but not identically distributed random variables. The departure from the case of identical distributions comes from a trend added to i.i.d. observations. Unlike previous authors we consider trends that do not completely destroy the asymptotic behaviour from the i.i.d. case.

Type
Research Papers
Copyright
Copyright © Applied Probability Trust 1987 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, R. J. (1978) Weak convergence results for extremal processes generated by dependent random variables. Ann. Prob. 6, 660667.Google Scholar
Ballerini, R. and Resnick, S. I. (1985) Records from improving populations. J. Appl. Prob. 22, 487502.10.2307/3213855Google Scholar
Billingsley, P. (1981) Weak Convergence of Measures: Applications in Probability. SIAM, Philadelphia.Google Scholar
Galambos, J. (1978) The Asymptotic Theory of Extreme Order Statistics. Wiley, New York.Google Scholar
Gnedenko, B. (1943) Sur la distribution limite du terme maximum d'une série aléatoire. Ann. Math. 44, 423453.10.2307/1968974Google Scholar
De Haan, L. (1970) On Regular Variation and its Application to the Weak Convergence of Sample Extremes. Mathematical Centre Tracts 32, Amsterdam.Google Scholar
De Haan, L. (1984) Extremal processes. In Statistical Extremes and Applications, ed. Tiago d'Oliveira, J., Reidel, Dordrecht.Google Scholar
De Haan, L. and Resnick, S. I. (1982) Local limit theorems for sample extremes. Ann. Prob. 10, 396413.10.1214/aop/1176993865Google Scholar
Neveu, J. (1977) Processus ponctuels. In Lecture Notes in Mathematics 598, Springer-Verlag, Berlin.Google Scholar
Pickands, J. III (1971) The two dimensional Poisson process and extremal processes. J. Appl. Prob. 8, 745756.10.2307/3212238Google Scholar
Resnick, S. I. (1986) Point processes, regular variation and weak convergence. Adv. Appl. Prob. 18, 66138.10.2307/1427239Google Scholar
Smith, R. L. and Miller, J. E. (1984) Predicting records. Technical Report, Department of Mathematics, Imperial College, London.Google Scholar
Yang, M. (1975) On the distribution of the inter-record times in an increasing population. J. Appl. Prob. 12, 148154.10.2307/3212417Google Scholar